Receptor structure-based discovery of non-metabolite agonists for the succinate receptor GPR91

Mette Trauelsen, Elisabeth Rexen Ulven, Siv A. Hjorth, Matjaz Brvar, Claudia Monaco, Thomas M. Frimurer, Thue W. Schwartz

 

Succinate functions not only as an energy source and building block but also as an extracellular messenger, signaling via the G-protein coupled receptor (GPCR) GPR91. Metabolic stress conditions cause the levels of succinate to rise, enabling activation of GPR91. The physiological role of GPR91 on whole body metabolism, however, is still unclear. Trauelsen and colleagues developed drug-like non-metabolite GPR91 agonists as potential pharmacological tools by using a receptor structure-based approach. The compounds they identified should make it possible to study effects of selective GPR91 activation in an in vivo setting after oral administration.

Objective: Besides functioning as an intracellular metabolite, succinate acts as a stress-induced extracellular signal through activation of GPR91 (SUCNR1) for which we lack suitable pharmacological tools.

Methods and results: Here we first determined that the cis conformation of the succinate backbone is preferred and that certain backbone modifications are allowed for GPR91 activation. Through receptor modeling over the X-ray structure of the closely related P2Y1 receptor, we discovered that the binding pocket is partly occupied by a segment of an extracellular loop and that succinate therefore binds in a very different mode than generally believed. Importantly, an empty side-pocket is identified next to the succinate binding site. All this information formed the basis for a substructure-based search query, which, combined with molecular docking, was used in virtual screening of the ZINC database to pick two serial mini-libraries of a total of only 245 compounds from which sub-micromolar, selective GPR91 agonists of unique structures were identified. The best compounds were backbone-modified succinate analogs in which an amide-linked hydrophobic moiety docked into the side-pocket next to succinate as shown by both loss- and gain-of-function mutagenesis. These compounds displayed GPR91-dependent activity in altering cytokine expression in human M2 macrophages similar to succinate, and importantly were devoid of any effect on the major intracellular target, succinate dehydrogenase.

Conclusions: These novel, synthetic non-metabolite GPR91 agonists will be valuable both as pharmacological tools to delineate the GPR91-mediated functions of succinate and as leads for the development of GPR91-targeted drugs to potentially treat low grade metabolic inflammation and diabetic complications such as retinopathy and nephropathy.