Capturing functional epigenomes for insight into metabolic diseases

Fiona Allum, Elin Grundberg

Background

Metabolic diseases such as obesity are known to be driven by both environmental and genetic factors. Although genome-wide association studies of common variants and their impact on complex traits have provided some biological insight into disease etiology, identified genetic variants have been found to contribute only a small proportion to disease heritability, and to map mainly to non-coding regions of the genome. To link variants to function, association studies of cellular traits, such as epigenetic marks, in disease-relevant tissues are commonly applied.

Scope of the review

We review large-scale efforts to generate genome-wide maps of coordinated epigenetic marks and their utility in complex disease dissection with a focus on DNA methylation. We contrast DNA methylation profiling methods and discuss the advantages of using targeted methods for single-base resolution assessments of methylation levels across tissue-specific regulatory regions to deepen our understanding of contributing factors leading to complex diseases.

Major conclusions

Large-scale assessments of DNA methylation patterns in metabolic disease-linked study cohorts have provided insight into the impact of variable epigenetic variants in disease etiology. In-depth profiling of epigenetic marks at regulatory regions, particularly at tissue-specific elements, will be key to dissect the genetic and environmental components contributing to metabolic disease onset and progression.