Dpp4+ interstitial progenitor cells contribute to basal and high fat diet-induced adipogenesis

Megan Stefkovich, Sarah Traynor, Lan Cheng, David Merrick, Patrick Seale

Objective

The capacity to generate new adipocytes from precursor cells is critical for maintaining metabolic health. Adipocyte precursor cells (APCs) constitute a heterogenous collection of cell types; however, the contribution of these various cell types to adipose tissue expansion in vivo remains unknown. The aim of the current study is to investigate the contribution of Dpp4+ progenitors to de novo adipogenesis.

Methods

Single cell analysis has identified several transcriptionally distinct subpopulations of APCs, including Dpp4+ progenitor cells concentrated in the connective tissue surrounding many organs, including white adipose tissue (WAT). Here, we generated a Dpp4CreER mouse model for in vivo lineage tracing of these cells and their downstream progeny in the setting of basal or high fat diet (HFD)-stimulated adipogenesis.

Results

Dpp4CreER mice enabled specific temporal labeling of Dpp4+ progenitor cells within their native connective tissue niche. Following a dietary chase period consisting of chow or HFD feeding for 18 weeks, Dpp4+ progenitors differentiated into mature adipocytes within the gonadal and subcutaneous WAT. HFD stimulated adipogenic contribution from Dpp4+ cells in the gonadal but not the subcutaneous depot. Flow cytometry analysis revealed that Dpp4+ progenitors give rise to DPP4(−)/ICAM1+ preadipocytes in vivo. HFD feeding did not perturb the flux of Dpp4+ cell conversion into ICAM1+ preadipocytes in gonadal WAT. Conversely, in subcutaneous WAT, HFD feeding/obesity led to an accumulation of ICAM1+ preadipocytes without a corresponding increase in mature adipocyte differentiation. Examination of non-classical murine visceral depots with relevance to humans, including omentum and retroperitoneal WAT, revealed robust contribution of Dpp4+ progenitors to de novo adipogenesis, which was further stimulated by HFD.

Conclusion

Our data demonstrate that Dpp4+ interstitial progenitor cells contribute to basal adipogenesis in all fat depots and are recruited to support de novo adipogenic expansion of visceral WAT in the setting of HFD-induced obesity.