Volume 59 | May 2022
Cover Story
The prevalence of obesity and type II diabetes is growing globally at rates indicating that environment rather than genes is the principal driver. Exposures to high-fat diet and toxicants, as well as micronutrient deficiency, can impact our health and that of future generations. Only now are we beginning to identify mechanisms linking these exposures to parental and offspring health. The epigenome refers to the biochemical content associated with DNA that impacts gene expression and chromatin organization. Uncovering how genomic information is organized and regulated through epigenetic processes to control gene expression and cell functions in the next generation is still in a nascent stage.
All Articles
- Abstract
Objective
Metabolic syndrome, obesity, and steatosis are characterized by a range of dysregulations including defects in ubiquitin ligase tagging proteins for degradation. The identification of novel hepatic genes associated with fatty liver disease and metabolic dysregulation may be relevant to unravelling new mechanisms involved in liver disease progression
Methods
Through integrative analysis of liver transcriptomic and metabolomicobtained from obese subjects with steatosis, we identified itchy E ubiquitin protein ligase (ITCH) as a gene downregulated in human hepatic tissue in relation to steatosis grade. Wild-type or ITCH knockout mouse models of non-alcoholic fatty liver disease (NAFLD) and obesity-related hepatocellular carcinoma were analyzed to dissect the causal role of ITCH in steatosis
Results
We show that ITCH regulation of branched-chain amino acids (BCAAs) degradation enzymes is impaired in obese women with grade 3 compared with grade 0 steatosis, and that ITCH acts as a gatekeeper whose loss results in elevation of circulating BCAAs associated with hepatic steatosis. When ITCHexpression was specifically restored in the liver of ITCH knockout mice, ACADSB mRNA and protein are restored, and BCAA levels are normalized both in liver and plasma
Conclusions
Our data support a novel functional role for ITCH in the hepatic regulation of BCAA metabolism and suggest that targeting ITCH in a liver-specific manner might help delay the progression of metabolic hepatic diseases and insulin resistance.
- Abstract
Objective
Aguti-related protein (AGRP) neurons in the arcuate nucleus of the hypothalamus (ARC), which co-express neuropeptide Y (NPY), are key regulators of feeding and energy homeostasis. However, the precise role NPY has within these neurons and the specific pathways that it control are still unclear. In this article, we aimed to determine what aspects of feeding behaviour and energy homeostasis are controlled by NPY originating from AGRP neurons and which Y-receptor pathways are utilised to fulfil this function.
Methods
Novel conditional Agrpcre/+;Npylox/lox knockout mice were generated and comprehensively phenotyped, both under standard chow as well as high-fat-diet conditions. Designer receptor exclusively activated by designer drugs (DREADD) technology was used to assess the altered responses on feeding and energy homeostasis control in the absence of NPY in these neurons. Rescue experiments utilising Npy1r- and Npy2r-selective NPY ligands were performed to assess which component of the energy homeostasis control is dependent by which specific Y-receptor pathway.
Results
We show that the specific deletion of Npy only in AGRP neurons leads to a paradoxical mild obese phenotype associated with reduced locomotion and energy expenditure and increased feeding and Respiratory Quotient (RQ) that remain elevated under a positive energy balance. The activation of Npy-deficient AGRP neurons via DREADD's is still able to drive feeding, yet with a delayed onset. Additionally, Clozapine-N-oxide (CNO) treatment reduces locomotion without impacting on energy expenditure. Rescue experiments re-introducing Npy1r- and Npy2r-selective NPY ligands revealed that the increased feeding and RQ are mostly driven by Npy1r, whereas energy expenditure and locomotion are controlled by Npy2r signalling.
Conclusion
Together, these results demonstrate that NPY originating from AGRP neurons is not only critical to initiate but also for continuously driving feeding, and we for the first time identify which Y-receptor controls which pathway.
- Abstract
Objective
Polyunsaturated fatty acid (PUFA) supplements have been trialled as a treatment for a number of conditions and produced a variety of results. This variety is ascribed to the supplements, that often comprise a mixture of fatty acids, and to different effects in different organs. In this study, we tested the hypothesis that the supplementation of individual PUFAs has system-level effects that are dependent on the molecular structure of the PUFA.
Methods
We undertook a network analysis using Lipid Traffic Analysis to identify both local and system-level changes in lipid metabolism using publicly available lipidomics data from a mouse model of supplementation with FA(20:4n-6), FA(20:5n-3), and FA(22:6n-3); arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid, respectively. Lipid Traffic Analysis is a new computational/bioinformatics tool that uses the spatial distribution of lipids to pinpoint changes or differences in control of metabolism, thereby suggesting mechanistic reasons for differences in observed lipid metabolism.
Results
There was strong evidence for changes to lipid metabolism driven by and dependent on the structure of the supplemented PUFA. Phosphatidylcholineand triglycerides showed a change in the variety more than the total number of variables, whereas phosphatidylethanolamine and phosphatidylinositolshowed considerable change in both which variables and the number of them, in a highly PUFA-dependent manner. There was also evidence for changes to the endogenous biosynthesis of fatty acids and to both the elongation and desaturation of fatty acids.
Conclusions
These results show that the full biological impact of PUFA supplementation is far wider than any single-organ effect and implies that supplementation and dosing with PUFAs require a system-level assessment.
- Abstract
Objective
Skeletal muscle is a heterogeneous and dynamic tissue that adapts to functional demands and substrate availability by modulating muscle fiber size and type. The concept of muscle fiber type relates to its contractile (slow or fast) and metabolic (glycolytic or oxidative) properties. Here, we tested whether disruptions in muscle oxidative catabolism are sufficient to prompt parallel adaptations in energetics and contractile protein composition.
Methods
Mice with defective mitochondrial long-chain fatty acid oxidation (mLCFAO) in the skeletal muscle due to loss of carnitine palmitoyltransferase 2 (Cpt2Sk−/−) were used to model a shift in muscle macronutrient catabolism. Glycolytic and oxidative muscles of Cpt2Sk−/− mice and control littermates were compared for the expression of energy metabolism-related proteins, mitochondrial respiratory capacity, and myosin heavy chain isoform composition.
Results
Differences in bioenergetics and macronutrient utilization in response to energy demands between control muscles were intrinsic to the mitochondria, allowing for a clear distinction of muscle types. Loss of CPT2 ablated mLCFAO and resulted in mitochondrial biogenesis occurring most predominantly in oxidative muscle fibers. The metabolism-related proteomic signature of Cpt2Sk−/− oxidative muscle more closely resembled that of glycolytic muscle than of control oxidative muscle. Respectively, intrinsic substrate-supported mitochondrial respiration of CPT2 deficient oxidative muscles shifted to closely match that of glycolytic muscles. Despite this shift in mitochondrial metabolism, CPT2 deletion did not result in contractile-based fiber type switching according to myosin heavy chain composition analysis.
Conclusion
The loss of mitochondrial long-chain fatty acid oxidation elicits an adaptive response involving conversion of oxidative muscle toward a metabolic profile that resembles a glycolytic muscle, but this is not accompanied by changes in myosin heavy chain isoforms. These data suggest that shifts in muscle catabolism are not sufficient to drive shifts in the contractile apparatus but are sufficient to drive adaptive changes in metabolic properties.
- Abstract
Objective
The intestine is an important organ for nutrient metabolism via absorption and endocrine systems. Nutrients regulate O-GlcNAcylation, a post-translational modification of various proteins by O-GlcNAc transferase (OGT). We have previously shown that general OGT knockout induced severe weight loss and hypoglycaemia in mice, but little is known about how O-GlcNAcylation in the intestine modulates nutrient metabolism, especially glucose metabolism, through absorption. We aimed to reveal the roles of O-GlcNAcylation in glucose absorption by the small intestine and elucidate the mechanism by which O-GlcNAcylation regulates sodium-glucose cotransporter 1 (SGLT1) expression.
Methods
First, we fasted normal mice and examined the changes in glucose transporters and O-GlcNAcylation in the intestine. Then, we generated two lines of small intestine-specific OGT-deficient mice (congenital: Ogt-VKO, tamoxifen-inducible: Ogt-iVKO) and observed the changes in body weight and in glucose and lipid metabolism. Finally, we investigated Sglt1 gene regulation by O-GlcNAcylation using enteroendocrine STC-1 cells.
Results
Fasting decreased O-GlcNAcylation in the intestinal epithelium of normal mice. The Ogt-VKO mice showed significantly lower non-fasted blood glucose levels and were underweight compared with litter matched controls. Glycaemic excursion in the Ogt-VKO mice was significantly lower during the oral glucose tolerance test but comparable during the intraperitoneal glucose tolerance test. Furthermore, the Ogt-VKO mice exhibited lower Sglt1expression in the small intestine compared with the control mice. We obtained similar results using the Ogt-iVKO mice only after tamoxifenadministration. The oral d-xylose administration test revealed that the intestinal sugar absorption was diminished in the Ogt-iVKO mice and that GLP-1 secretion did not sufficiently increase after glucose gavage in the Ogt-iVKO mice. When using STC-1 cells, O-GlcNAcylation increased Sglt1 mRNA via a PKA/CREB-dependent pathway.
Conclusion
Collectively, loss of O-GlcNAcylation in the intestine reduced glucose absorption via suppression of SGLT1 expression; this may lead to new treatments for malabsorption, obesity and diabetes.
- Abstract
Objective
Parental environmental exposures can strongly influence descendant risks for adult disease. How paternal obesity changes the sperm chromatin leading to the acquisition of metabolic disease in offspring remains controversial and ill-defined. The objective of this study was to assess (1) whether obesity induced by a high-fat diet alters sperm histone methylation; (2) whether paternal obesity can induce metabolic disturbances across generations; (3) whether there could be cumulative damage to the sperm epigenome leading to enhanced metabolic dysfunction in descendants; and (4) whether obesity-sensitive regions associate with embryonic epigenetic and transcriptomicprofiles. Using a genetic mouse model of epigenetic inheritance, we investigated the role of histone H3 lysine 4 methylation (H3K4me3) in the paternal transmission of metabolic dysfunction. This transgenic mouseoverexpresses the histone demethylase enzyme KDM1A in the developing germline and has an altered sperm epigenome at the level of histone H3K4 methylation. We hypothesized that challenging transgenic sires with a high-fat diet would further erode the sperm epigenome and lead to enhanced metabolic disturbances in the next generations.
Methods
To assess whether paternal obesity can have inter- or transgenerational impacts, and if so to identify potential mechanisms of this non-genetic inheritance, we used wild-type C57BL/6NCrl and transgenic males with a pre-existing altered sperm epigenome. To induce obesity, sires were fed either a control or high-fat diet (10% or 60% kcal fat, respectively) for 10–12 weeks, then bred to wild-type C57BL/6NCrl females fed a regular diet. F1 and F2descendants were characterized for metabolic phenotypes by examining the effects of paternal obesity by sex, on body weight, fat mass distribution, the liver transcriptome, intraperitoneal glucose, and insulin tolerance tests. To determine whether obesity altered the F0 sperm chromatin, native chromatin immunoprecipitation-sequencing targeting H3K4me3 was performed. To gain insight into mechanisms of paternal transmission, we compared our sperm H3K4me3 profiles with embryonic and placental chromatin states, histone modification, and gene expression profiles.
Results
Obesity-induced alterations in H3K4me3 occurred in genes implicated in metabolic, inflammatory, and developmental processes. These processes were associated with offspring metabolic dysfunction and corresponded to genes enriched for H3K4me3 in embryos and overlapped embryonic and placentagene expression profiles. Transgenerational susceptibility to metabolic disease was only observed when obese F0 had a pre-existing modified sperm epigenome. This coincided with increased H3K4me3 alterations in sperm and more severe phenotypes affecting their offspring.
Conclusions
Our data suggest sperm H3K4me3 might serve as a metabolic sensor that connects paternal diet with offspring phenotypes via the placenta. This non-DNA-based knowledge of inheritance has the potential to improve our understanding of how environment shapes heritability and may lead to novel routes for the prevention of disease. This study highlights the need to further study the connection between the sperm epigenome, placental development, and children's health.
Summary sentence
Paternal obesity impacts sperm H3K4me3 and is associated with placenta, embryonic and metabolic outcomes in descendants.
- Abstract
Objective
Bone morphogenetic protein 8B (BMP8B) plays a major role in the regulation of energy homeostasis by modulating brown adipose tissue (BAT) thermogenesis and white adipose tissue (WAT) browning. Here, we investigated whether BMP8B's role in metabolism is affected by obesity and the possible molecular mechanisms underlying that action.
Methods
Central treatments with BMP8B were performed in rats fed a standard (SD) and high-fat diet (HFD), as well as in genetically modified mice. Energy balance studies, infrared thermographic analysis of BAT and molecular analysis of the hypothalamus, BAT and WAT were carried out.
Results
We show for the first time that HFD-induced obesity elicits resistance to the central actions of BMP8B on energy balance. This obesity-induced BMP8B resistance is explained by i) lack of effects on AMP-activated protein kinase (AMPK) signaling, ii) decreased BMP receptors signaling and iii) reduced expression of Bardet-Biedl Syndrome 1 (BBS1) protein, a key component of the protein complex BBSome in the ventromedial nucleus of the hypothalamus (VMH). The possible mechanistic involvement of BBS1 in this process is demonstrated by lack of a central response to BMP8B in mice carrying a single missense disease-causing mutation in the Bbs1 gene.
Conclusions
Overall, our data uncover a new mechanism of central resistance to hormonal action that may be of relevance in the pathophysiology of obesity.
- Abstract
Cell lineage reprogramming is the main approach for cancer cells to acquire drug resistance and escape targeted therapy. The use of potent targeted therapies in cancers has led to the development of highly aggressive carcinoma, including neuroendocrine prostate cancer (NEPC). Although metabolic reprogramming has been reported to be essential for tumor growth and energy production, the relationship between metabolic reprogramming and lineage differentiation which can cause hormone therapy resistance has never been reported in prostate cancer (PCa). Moreover, as there is still no efficient therapy for NEPC, it is urgent to reverse this lineage differentiation during the hormone therapy. Here for the first time, we used in vitro and in vivo human PCa models to study the effect of metabolic reprogramming on the lineage differentiation from the androgen receptor (AR)–dependent adenocarcinoma to AR-independent NEPC. This lineage differentiation leads to antiandrogen drug resistance and tumor development. This phenotype is enabled by the loss of mitochondrial pyruvate carrier (MPC), the gate for mitochondrial pyruvate influx, and can be reversed by MPC overexpression. Morphologic and cellular studies also demonstrate that the pyruvate kinaseM2 (PKM2) involved epithelium–mesenchymal transition process mediated this lineage alteration. Its inhibition is a potential treatment for MPC-lo tumors. All of these results suggest that metabolic rewiring can act as a starter for increased cellular plasticity which leads to antiandrogen therapy resistance through lineage differentiation. This study provides us with a potent treatment target for therapy-induced, enzalutamide-resistant NE-like prostate cancer.
- Abstract
Objective
Chronic inflammatory response plays a prominent role in obesity-related nonalcoholic fatty liver disease (NAFLD). However, the intrahepatic triggering mechanism of inflammation remains obscure. This study aimed to elucidate the role of serum amyloid A1 (SAA1), an acute-phase response protein, in the obesity-induced hepatic inflammation and NAFLD.
Methods
Male mice were fed a high fat diet (HFD) for 16 weeks, and insulin resistance, hepatic steatosis, and inflammation in mice were monitored. Murine SAA1/2 was genetically manipulated to investigate the role of SAA1 in NAFLD.
Results
We found that SAA1 was increased in the NAFLD liver in both humans and mice. Knockout of SAA1/2 or knockdown of hepatic SAA1/2 promoted energy expenditure and alleviated HFD-induced metabolic disorder, hepatic steatosis, and inflammation. Endogenous overexpression of SAA1 in hepatocytes by adeno-associated virus 8 (AAV8) transfection aggravated overnutrition-associated gain of body weight, insulin resistance, hepatic lipid accumulation, and liver injury, which were markedly alleviated by knockout of murine toll-like receptor 4 (TLR4). Mechanistically, SAA1 directly bound with TLR4/myeloid differentiation 2 (MD2) to induce TLR4 internalization, leading to the activation of nuclear factor (NF)-κB signaling and production of both SAA1 and other inflammatory cytokines, including interleukin (IL)-6 and C–C chemokine ligand (CCL2) in hepatocytes. Administration of HFD mice with an AAV8-shRNA-SAA1/2 showed a therapeutic effect on hepatic inflammation and NAFLD progression.
Conclusions
These results demonstrate that SAA1 triggers hepatic steatosis and intrahepatic inflammatory response by forming a SAA1/TLR4/NF-κB/SAA1 feedforward regulatory circuit, which, in turn, leads to NAFLD progression. SAA1 may act as a potential target for the disease intervention.
- Abstract
Objective
The minor allele (A) of the rs373863828 variant (p.Arg457Gln) in CREBRF is restricted to indigenous peoples of the Pacific islands (including New Zealand Māori and peoples of Polynesia), with a frequency of up to 25% in these populations. This allele associates with a large increase in body mass index(BMI) but with significantly lower risk of type-2 diabetes (T2D). It remains unclear whether the increased BMI is driven by increased adiposity or by increased lean mass.
Methods
We undertook body composition analysis using DXA in 189 young men of Māori and Pacific descent living in Aotearoa New Zealand. Further investigation was carried out in two orthologous Arg458Gln knockin mouse models on FVB/NJ and C57BL/6j backgrounds.
Results
The rs373863828 A allele was associated with lower fat mass when adjusted for BMI (p < 0.05) and was associated with significantly lower circulating levels of the muscle inhibitory hormone myostatin (p < 0.05). Supporting the human data, significant reductions in adipose tissue mass were observed in the knockin mice. This was more significant in older mice in both backgrounds and appeared to be the result of reduced age-associated increases in fat mass. The older male knockin mice on C57BL/6j background also had increased grip strength (p < 0.01) and lower levels of myostatin (p < 0.05).
Conclusion
Overall, these results prove that the rs373863828 A-allele is associated with a reduction of myostatin levels which likely contribute to an age-dependent lowering of fat mass, at least in males.