Cover Story
Emerging evidence from both human and animal studies underscores a significant association between obesity and cognitive decline, including brain atrophy, diminished white matter volume, compromised blood–brain barrier integrity, and heightened susceptibility to late-onset Alzheimer's disease. Furthermore, chronic disruptions in glucose homeostasis, impaired insulin signaling, and metabolic dysfunctions are closely linked to cognitive impairments and the pathology of Alzheimer's disease. These observations suggest the importance of maintaining normal body weight and proper fuel metabolism, which is crucial to reducing the risk of developing cognitive decline and neurodegenerative diseases.
All Articles
- Abstract
Sulfonylureas exert antidiabetic action on adipocytes by inhibition of PPARγ serine 273 phosphorylation
Objective
Sulfonylureas (SUs) are still among the mostly prescribed antidiabetic drugs with an established mode of action: release of insulin from pancreatic β-cells. In addition, effects of SUs on adipocytes by activation of the nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) have been described, which might explain their insulin-sensitizing potential observed in patients. However, there is a discrepancy between the impact of SUs on antidiabetic action and their rather moderate in vitro effect on PPARγ transcriptional activity. Recent studies have shown that some PPARγ ligands can improve insulin sensitivity by blocking PPARγ Ser-273 phosphorylation without having full agonist activity. It is unknown if SUs elicit their antidiabetic effects on adipocytes by inhibition of PPARγ phosphorylation. Here, we investigated if binding of SUs to PPARγ can interfere with PPARγ Ser-273 phosphorylation and determined their antidiabetic actions in vitro in primary human white adipocytes and in vivo in high-fat diet (HFD) obese mice.
Methods
Primary human white preadipocytes were differentiated in the presence of glibenclamide, glimepiride and PPARγ ligands rosiglitazone and SR1664 to compare PPARγ Ser-273 phosphorylation, glucose uptake and adipokine expression. Transcriptional activity at PPARγ was determined by luciferase assays, quantification of PPARγ Ser-273 phosphorylation was determined by Western blotting and CDK5 kinase assays. In silico modelling was performed to gain insight into the binding characteristics of SUs to PPARγ. HFD mice were administered SUs and rosiglitazone for 6 days. PPARγ Ser-273 phosphorylation in white adipose tissue (WAT), body composition, glucose tolerance, adipocyte morphology and expression levels of genes involved in PPARγ activity in WAT and brown adipose tissue (BAT) were evaluated.
Results
SUs inhibit phosphorylation of PPARγ at Ser-273 in primary human white adipocytes and exhibit a positive antidiabetic expression profile, which is characterized by up regulation of insulin-sensitizing and down regulation of insulin resistance-inducing adipokines. We demonstrate that SUs directly bind to PPARγ by in silico modelling and inhibit phosphorylation in kinase assays to a similar extend as rosiglitazone and SR1664. In HFD mice SUs reduce PPARγ phosphorylation in WAT and have comparable effects on gene expression to rosiglitazone. In BAT SUs increase UCP1 expression and reduce lipid droplets sizes.
Conclusions
Our findings indicate that a part of SUs extra-pancreatic effects on adipocytes in vitro and in vivo is probably mediated via their interference with PPARγ phosphorylation rather than via classical agonistic activity at clinical concentrations.
- Abstract
Suppression of hepatic ChREBP⍺-CYP2C50 axis-driven fatty acid oxidation sensitizes mice to diet-induced MASLD/MASH
Objectives
Compromised hepatic fatty acid oxidation (FAO) has been observed in human MASH patients and animal models of MASLD/MASH. It remains poorly understood how and when the hepatic FAO pathway is suppressed during the progression of MASLD towards MASH. Hepatic ChREBP⍺ is a classical lipogenic transcription factor that responds to the intake of dietary sugars.
Methods
We examined its role in regulating hepatocyte fatty acid oxidation (FAO) and the impact of hepatic Chrebpa deficiency on sensitivity to diet-induced MASLD/MASH in mice.
Results
We discovered that hepatocyte ChREBP⍺ is both necessary and sufficient to maintain FAO in a cell-autonomous manner independently of its DNA-binding activity. Supplementation of synthetic PPAR⍺/δ agonist is sufficient to restore FAO in Chrebp−/− primary mouse hepatocytes. Hepatic ChREBP⍺ was decreased in mouse models of diet-induced MAFSLD/MASH and in patients with MASH. Hepatocyte-specific Chrebp⍺ knockout impaired FAO, aggravated liver steatosis and inflammation, leading to early-onset fibrosis in response to diet-induced MASH. Conversely, liver overexpression of ChREBP⍺-WT or its non-lipogenic mutant enhanced FAO, reduced lipid deposition, and alleviated liver injury, inflammation, and fibrosis. RNA-seq analysis identified the CYP450 epoxygenase (CYP2C50) pathway of arachidonic acid metabolism as a novel target of ChREBP⍺. Over-expression of CYP2C50 partially restores hepatic FAO in primary hepatocytes with Chrebp⍺ deficiency and attenuates preexisting MASH in the livers of hepatocyte-specific Chrebp⍺-deleted mice.
Conclusions
Our findings support the protective role of hepatocyte ChREBPa against diet-induced MASLD/MASH in mouse models in part via promoting CYP2C50-driven FAO.
- Abstract
Effect of astaxanthin in type-2 diabetes -induced APPxhQC transgenic and NTG mice
Objectives
Aggregation and misfolding of amyloid beta (Aβ) and tau proteins, suggested to arise from post-translational modification processes, are thought to be the main cause of Alzheimer's disease (AD). Additionally, a plethora of evidence exists that links metabolic dysfunctions such as obesity, type 2 diabetes (T2D), and dyslipidemia to the pathogenesis of AD. We thus investigated the combinatory effect of T2D and human glutaminyl cyclase activity (pyroglutamylation), on the pathology of AD and whether astaxanthin (ASX) treatment ameliorates accompanying pathophysiological manifestations.
Methods
Male transgenic AD mice, APPxhQC, expressing human APP751 with the Swedish and the London mutation and human glutaminyl cyclase (hQC) enzyme and their non-transgenic (NTG) littermates were used. Both APPxhQC and NTG mice were allocated to 3 groups, control, T2D-control, and T2D-ASX. Mice were fed control or high fat diet ± ASX for 13 weeks starting at an age of 11–12 months. High fat diet fed mice were further treated with streptozocin for T2D induction. Effects of genotype, T2D induction, and ASX treatment were evaluated by analysing glycemic readouts, lipid concentration, Aβ deposition, hippocampus-dependent cognitive function and nutrient sensing using immunosorbent assay, ELISA-based assays, western blotting, immunofluorescence staining, and behavioral testing via Morris water maze (MWM), respectively.
Results
APPxhQC mice presented a higher glucose sensitivity compared to NTG mice. T2D-induced brain dysfunction was more severe in NTG compared to the APPxhQC mice. T2D induction impaired memory functions while increasing hepatic LC3B, ABCA1, and p65 levels in NTG mice. T2D induction resulted in a progressive shift of Aβ from the soluble to insoluble form in APPxhQC mice. ASX treatment reversed T2D-induced memory dysfunction in NTG mice and in parallel increased hepatic pAKT while decreasing p65 and increasing cerebral p-S6rp and p65 levels. ASX treatment reduced soluble Aβ38 and Aβ40 and insoluble Aβ40 levels in T2D-induced APPxhQC mice.
Conclusions
We demonstrate that T2D induction in APPxhQC mice poses additional risk for AD pathology as seen by increased Aβ deposition. Although ASX treatment reduced Aβ expression in T2D-induced APPxhQC mice and rescued T2D-induced memory impairment in NTG mice, ASX treatment alone may not be effective in cases of T2D comorbidity and AD.
- Abstract
Dorsolateral septum GLP-1R neurons regulate feeding via lateral hypothalamic projections
Objective
Although glucagon-like peptide 1 (GLP-1) is known to regulate feeding, the central mechanisms contributing to this function remain enigmatic. Here, we aim to test the role of neurons expressing GLP-1 receptors (GLP-1R) in the dorsolateral septum (dLS; dLSGLP−1R) that project to the lateral hypothalamic area (LHA) on food intake and determine the relationship with feeding regulation.
Methods
Using chemogenetic manipulations, we assessed how activation or inhibition of dLSGLP−1R neurons affected food intake in Glp1r-ires-Cre mice. Then, we used channelrhodopsin-assisted circuit mapping, chemogenetics, and electrophysiological recordings to identify and assess the role of the pathway from dLSGLP−1R →LHA projections in regulating food intake.
Results
Chemogenetic inhibition of dLSGLP−1R neurons increases food intake. LHA is a major downstream target of dLSGLP−1R neurons. The dLSGLP−1R→LHA projections are GABAergic, and chemogenetic inhibition of this pathway also promotes food intake. While chemogenetic activation of dLSGLP−1R→LHA projections modestly decreases food intake, optogenetic stimulation of the dLSGLP−1R→LHA projection terminals in the LHA rapidly suppresses feeding behavior. Finally, we demonstrate that the GLP-1R agonist, Exendin 4 enhances dLSGLP−1R →LHA GABA release.
Conclusions
Together, these results demonstrate that dLS-GLP-1R neurons and the inhibitory pathway to LHA can regulate feeding behavior, which might serve as a potential therapeutic target for the treatment of eating disorders or obesity.
- Abstract
Intra-islet glucagon signalling regulates beta-cell connectivity, first-phase insulin secretion and glucose homoeostasis
Objective
Type 2 diabetes (T2D) is characterised by the loss of first-phase insulin secretion. We studied mice with β-cell selective loss of the glucagon receptor (Gcgrfl/fl X Ins-1Cre), to investigate the role of intra-islet glucagon receptor (GCGR) signalling on pan-islet [Ca2+]I activity and insulin secretion.
Methods
Metabolic profiling was conducted on Gcgrβ-cell−/− and littermate controls. Crossing with GCaMP6f (STOP flox) animals further allowed for β-cell specific expression of a fluorescent calcium indicator. These islets were functionally imaged in vitro and in vivo. Wild-type mice were transplanted with islets expressing GCaMP6f in β-cells into the anterior eye chamber and placed on a high fat diet. Part of the cohort received a glucagon analogue (GCG-analogue) for 40 days and the control group were fed to achieve weight matching. Calcium imaging was performed regularly during the development of hyperglycaemia and in response to GCG-analogue treatment.
Results
Gcgrβ-cell−/− mice exhibited higher glucose levels following intraperitoneal glucose challenge (control 12.7 mmol/L ± 0.6 vs. Gcgrβ-cell−/− 15.4 mmol/L ± 0.0 at 15 min, p = 0.002); fasting glycaemia was not different to controls. In vitro, Gcgrβ-cell−/− islets showed profound loss of pan-islet [Ca2+]I waves in response to glucose which was only partially rescued in vivo. Diet induced obesity and hyperglycaemia also resulted in a loss of co-ordinated [Ca2+]I waves in transplanted islets. This was reversed with GCG-analogue treatment, independently of weight-loss (n = 8).
Conclusion
These data provide novel evidence for the role of intra-islet GCGR signalling in sustaining synchronised [Ca2+]I waves and support a possible therapeutic role for glucagonergic agents to restore the insulin secretory capacity lost in T2D.
- Abstract
A novel fatty acid mimetic with pan-PPAR partial agonist activity inhibits diet-induced obesity and metabolic dysfunction-associated steatotic liver disease
Objective
The prevalence of metabolic diseases is increasing globally at an alarming rate; thus, it is essential that effective, accessible, low-cost therapeutics are developed. Peroxisome proliferator-activated receptors (PPARs) are transcription factors that tightly regulate glucose homeostasis and lipid metabolism and are important drug targets for the treatment of type 2 diabetes and dyslipidemia. We previously identified LDT409, a fatty acid-like compound derived from cashew nut shell liquid, as a novel pan-active PPARα/γ/δ compound. Herein, we aimed to assess the efficacy of LDT409 in vivo and investigate the molecular mechanisms governing the actions of the fatty acid mimetic LDT409 in diet-induced obese mice.
Methods
C57Bl/6 mice (6–11-month-old) were fed a chow or high fat diet (HFD) for 4 weeks; mice thereafter received once daily intraperitoneal injections of vehicle, 10 mg/kg Rosiglitazone, 40 mg/kg WY14643, or 40 mg/kg LDT409 for 18 days while continuing the HFD. During treatments, body weight, food intake, glucose and insulin tolerance, energy expenditure, and intestinal lipid absorption were measured. On day 18 of treatment, tissues and plasma were collected for histological, molecular, and biochemical analysis.
Results
We found that treatment with LDT409 was effective at reversing HFD-induced obesity and associated metabolic abnormalities in mice. LDT409 lowered food intake and hyperlipidemia, while improving insulin tolerance. Despite being a substrate of both PPARα and PPARγ, LDT409 was crucial for promoting hepatic fatty acid oxidation and reducing hepatic steatosis in HFD-fed mice. We also highlighted a role for LDT409 in white and brown adipocytes in vitro and in vivo where it decreased fat accumulation, increased lipolysis, induced browning of WAT, and upregulated thermogenic gene Ucp1. Remarkably, LDT409 reversed HFD-induced weight gain back to chow-fed control levels. We determined that the LDT409-induced weight-loss was associated with a combination of increased energy expenditure (detectable before weight loss was apparent), decreased food intake, increased systemic fat utilization, and increased fecal lipid excretion in HFD-fed mice.
Conclusions
Collectively, LDT409 represents a fatty acid mimetic that generates a uniquely favorable metabolic response for the treatment of multiple abnormalities including obesity, dyslipidemia, metabolic dysfunction-associated steatotic liver disease, and diabetes. LDT409 is derived from a highly abundant natural product-based starting material and its development could be pursued as a therapeutic solution to the global metabolic health crisis.
- Abstract
Inhibition of hepatic p63 ameliorates steatohepatitis with fibrosis in mice
Objective
p63 is a transcription factor involved in multiple biological functions. In the liver, the TAp63 isoform induces lipid accumulation in hepatocytes. However, the role of liver TAp63 in the progression of metabolic dysfunction-associated steatohepatitis (MASH) with fibrosis is unknown.
Methods
We evaluated the hepatic p63 levels in different mouse models of steatohepatitis with fibrosis induced by diet. Next, we used virogenetic approaches to manipulate the expression of TAp63 in adult mice under diet-induced steatohepatitis with fibrosis and characterized the disease condition. Finally, we performed proteomics analysis in mice with overexpression and knockdown of hepatic TAp63.
Results
Levels of TAp63, but not of ΔN isoform, are increased in the liver of mice with diet-induced steatohepatitis with fibrosis. Both preventive and interventional strategies for the knockdown of hepatic TAp63 significantly ameliorated diet-induced steatohepatitis with fibrosis in mice fed a methionine- and choline-deficient diet (MCDD) and choline deficient and high fat diet (CDHFD). The overexpression of hepatic TAp63 in mice aggravated the liver condition in mice fed a CDHFD. Proteomic analysis in the liver of these mice revealed alteration in multiple proteins and pathways, such as oxidative phosphorylation, antioxidant activity, peroxisome function and LDL clearance.
Conclusions
These results indicate that liver TAp63 plays a critical role in the progression of diet-induced steatohepatitis with fibrosis, and its inhibition ameliorates the disease.
- Abstract
Differential cell type-specific function of the aryl hydrocarbon receptor and its repressor in diet-induced obesity and fibrosis
Objective
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor regulating xenobiotic responses as well as physiological metabolism. Dietary AhR ligands activate the AhR signaling axis, whereas AhR activation is negatively regulated by the AhR repressor (AhRR). While AhR-deficient mice are known to be resistant to diet-induced obesity (DIO), the influence of the AhRR on DIO has not been assessed so far.
Methods
In this study, we analyzed AhRR−/− mice and mice with a conditional deletion of either AhRR or AhR in myeloid cells under conditions of DIO and after supplementation of dietary AhR ligands. Moreover, macrophage metabolism was assessed using Seahorse Mito Stress Test and ROS assays as well as transcriptomic analysis.
Results
We demonstrate that global AhRR deficiency leads to a robust, but not as profound protection from DIO and hepatosteatosis as AhR deficiency. Under conditions of DIO, AhRR−/− mice did not accumulate TCA cycle intermediates in the circulation in contrast to wild-type (WT) mice, indicating protection from metabolic dysfunction. This effect could be mimicked by dietary supplementation of AhR ligands in WT mice. Because of the predominant expression of the AhRR in myeloid cells, AhRR-deficient macrophages were analyzed for changes in metabolism and showed major metabolic alterations regarding oxidative phosphorylation and mitochondrial activity. Unbiased transcriptomic analysis revealed increased expression of genes involved in de novo lipogenesis and mitochondrial biogenesis. Mice with a genetic deficiency of the AhRR in myeloid cells did not show alterations in weight gain after high fat diet (HFD) but demonstrated ameliorated liver damage compared to control mice. Further, deficiency of the AhR in myeloid cells also did not affect weight gain but led to enhanced liver damage and adipose tissue fibrosis compared to controls.
Conclusions
AhRR-deficient mice are resistant to diet-induced metabolic syndrome. Although conditional ablation of either the AhR or AhRR in myeloid cells did not recapitulate the phenotype of the global knockout, our findings suggest that enhanced AhR signaling in myeloid cells deficient for AhRR protects from diet-induced liver damage and fibrosis, whereas myeloid cell-specific AhR deficiency is detrimental.
- Abstract
In vivo CRISPR screening identifies geranylgeranyl diphosphate as a pancreatic cancer tumor growth dependency
Objective
Cancer cells must maintain lipid supplies for their proliferation and do so by upregulating lipogenic gene programs. The sterol regulatory element-binding proteins (SREBPs) act as modulators of lipid homeostasis by acting as transcriptional activators of genes required for fatty acid and cholesterol synthesis and uptake. SREBPs have been recognized as chemotherapeutic targets in multiple cancers, however it is not well understood which SREBP target genes are essential for tumorigenesis. In this study, we examined the requirement of SREBP target genes for pancreatic ductal adenocarcinoma (PDAC) tumor growth.
Methods
Here we constructed a custom CRISPR knockout library containing known SREBP target genes and performed in vitro 2D culture and in vivo orthotopic xenograft CRISPR screens using a patient-derived PDAC cell line. In vitro, we grew cells in medium supplemented with 10% fetal bovine serum (FBS) or 10% lipoprotein-deficient serum (LPDS) to examine differences in gene essentiality in different lipid environments. In vivo, we injected cells into the pancreata of nude mice and collected tumors after 4 weeks.
Results
We identified terpenoid backbone biosynthesis genes as essential for PDAC tumor development. Specifically, we identified the non-sterol isoprenoid product of the mevalonate pathway, geranylgeranyl diphosphate (GGPP), as an essential lipid for tumor growth. Mechanistically, we observed that restricting mevalonate pathway activity using statins and SREBP inhibitors synergistically induced apoptosis and caused disruptions in small G protein prenylation that have pleiotropic effects on cellular signaling pathways. Finally, we demonstrated that geranylgeranyl diphosphate synthase 1 (GGPS1) knockdown significantly reduces tumor burden in an orthotopic xenograft mouse model.
Conclusions
These findings indicate that PDAC tumors selectively require GGPP over other lipids such as cholesterol and fatty acids and that this is a targetable vulnerability of pancreatic cancer cells.
- Abstract
The novel adrenergic agonist ATR-127 targets skeletal muscle and brown adipose tissue to tackle diabesity and steatohepatitis
Objective
Simultaneous activation of β2- and β3-adrenoceptors (ARs) improves whole-body metabolism via beneficial effects in skeletal muscle and brown adipose tissue (BAT). Nevertheless, high-efficacy agonists simultaneously targeting these receptors whilst limiting activation of β1-ARs – and thus inducing cardiovascular complications – are currently non-existent. Therefore, we here developed and evaluated the therapeutic potential of a novel β2-and β3-AR, named ATR-127, for the treatment of obesity and its associated metabolic perturbations in preclinical models.
Methods
In the developmental phase, we assessed the impact of ATR-127's on cAMP accumulation in relation to the non-selective β-AR agonist isoprenaline across various rodent β-AR subtypes, including neonatal rat cardiomyocytes. Following these experiments, L6 muscle cells were stimulated with ATR-127 to assess the impact on GLUT4-mediated glucose uptake and intramyocellular cAMP accumulation. Additionally, in vitro, and in vivo assessments are conducted to measure ATR-127's effects on BAT glucose uptake and thermogenesis. Finally, diet-induced obese mice were treated with 5 mg/kg ATR-127 for 21 days to investigate the effects on glucose homeostasis, body weight, fat mass, skeletal muscle glucose uptake, BAT thermogenesis and hepatic steatosis.
Results
Exposure of L6 muscle cells to ATR-127 robustly enhanced GLUT4-mediated glucose uptake despite low intramyocellular cAMP accumulation. Similarly, ATR-127 markedly increased BAT glucose uptake and thermogenesis both in vitro and in vivo. Prolonged treatment of diet-induced obese mice with ATR-127 dramatically improved glucose homeostasis, an effect accompanied by decreases in body weight and fat mass. These effects were paralleled by an enhanced skeletal muscle glucose uptake, BAT thermogenesis, and improvements in hepatic steatosis.
Conclusions
Our results demonstrate that ATR-127 is a highly effective, novel β2- and β3-ARs agonist holding great therapeutic promise for the treatment of obesity and its comorbidities, whilst potentially limiting cardiovascular complications. As such, the therapeutic effects of ATR-127 should be investigated in more detail in clinical studies.