Cover Story Current Issue

The detrimental effects of sleep loss on glucose tolerance are now well established, and insufficient sleep is a risk factor for the development of type 2 diabetes (T2D). In fact, sleep loss is comparable with other more traditional risk factors that are associated with the development of T2D, such as physical inactivity.

Nicholas J. Saner, Matthew J-C. Lee, Jujiao Kuang, Nathan W. Pitchford, ... Jonathan D. Bartlett

Full text

 

Current Issue

Beige fat is dispensable for the metabolic benefits associated with myostatin deletion

François Marchildon, Jingyi Chi, Sean O'Connor, Hilary Bediako, Paul Cohen

Objective

Increasing muscle mass and activating beige fat both have great potential for ameliorating obesity and its comorbidities. Myostatin null mice have increased skeletal muscle mass and are protected from obesity and its sequelae. Deletion of myostatin has also been suggested to result in the activation of beige adipocytes, thermogenic fat cells with anti-obesity and anti-diabetes properties. It is not known whether beige fat activation contributes to the protection from obesity in myostatin null mice.

Methods

To investigate the role of beige fat activation in the metabolic benefits associated with myostatin deletion, we crossed myostatin null mice to adipocyte-specific PRDM16 knockout mice. We analyzed this new mouse model using molecular profiling, whole mount three-dimensional tissue imaging, tissue respiration, and glucose and insulin tolerance tests in models of diet-induced obesity.

Results

Here, we report that PRDM16 is required for the activation of beige fat in the absence of myostatin. However, we show in both male and female mice that beige fat activation is dispensable for the protection from obesity, glucose intolerance, insulin resistance, and hepatic steatosis mediated by myostatin deletion.

Conclusion

These findings demonstrate that increasing muscle mass can compensate for the inactivation of beige fat and raise the possibility of targeting muscle mass as a therapeutic approach to offset the deleterious effects of adipose tissue dysfunction in obesity and metabolic syndrome.

Beige fat is dispensable for the metabolic benefits associated with myostatin deletion

François Marchildon, Jingyi Chi, Sean O'Connor, Hilary Bediako, Paul Cohen

Objective

Increasing muscle mass and activating beige fat both have great potential for ameliorating obesity and its comorbidities. Myostatin null mice have increased skeletal muscle mass and are protected from obesity and its sequelae. Deletion of myostatin has also been suggested to result in the activation of beige adipocytes, thermogenic fat cells with anti-obesity and anti-diabetes properties. It is not known whether beige fat activation contributes to the protection from obesity in myostatin null mice.

Methods

To investigate the role of beige fat activation in the metabolic benefits associated with myostatin deletion, we crossed myostatin null mice to adipocyte-specific PRDM16 knockout mice. We analyzed this new mouse model using molecular profiling, whole mount three-dimensional tissue imaging, tissue respiration, and glucose and insulin tolerance tests in models of diet-induced obesity.

Results

Here, we report that PRDM16 is required for the activation of beige fat in the absence of myostatin. However, we show in both male and female mice that beige fat activation is dispensable for the protection from obesity, glucose intolerance, insulin resistance, and hepatic steatosis mediated by myostatin deletion.

Conclusion

These findings demonstrate that increasing muscle mass can compensate for the inactivation of beige fat and raise the possibility of targeting muscle mass as a therapeutic approach to offset the deleterious effects of adipose tissue dysfunction in obesity and metabolic syndrome.

The 60 Second Metabolist

In this section authors briefly report on their work recently published in Molecular Metabolism.

Watch the most recent interviews by clicking the video still. 

Here is a video of Vimeo. When the iframes is activated, a connection to Vimeo is established and, if necessary, cookies from Vimeo are also used. For further information on cookies policy click here.

Here is a video of Vimeo. When the iframes is activated, a connection to Vimeo is established and, if necessary, cookies from Vimeo are also used. For further information on cookies policy click here.

Here is a video of Vimeo. When the iframes is activated, a connection to Vimeo is established and, if necessary, cookies from Vimeo are also used. For further information on cookies policy click here.