-
Vol 44, February 2021 - current issue
-
Vol 27, September 2019
-
Vol 26, August 2019
-
Vol 25, July 2019
-
Vol 24, June 2019
-
Vol 23, May 2019
-
Vol 22, April 2019
-
Vol 21, March 2019
-
Vol 20, February 2019
-
Vol 19, January 2019
-
Vol 18, December 2018
-
Vol 17, November 2018
-
Vol 16, October 2018
-
Vol 15, September 2018
-
Vol 14, August 2018
-
Vol 13, July 2018
-
Vol 12, June 2018
-
Vol 11, May 2018
-
Vol 10, April 2018
-
Vol 9, March 2018
-
Vol 8, February 2018
-
Vol 7, January 2018
-
Vol 6 No 12, December 2017
-
Vol 6 No 11, November 2017
-
Vol 6 No 10, October 2017
-
Vol 6 No 9, September 2017
-
Vol 6 No 8, August 2017
-
Vol 6 No 7, July 2017
-
Vol 6 No 6, June 2017
-
Vol 6 No 5, May 2017
-
Vol 6 No 4, April 2017
-
Vol 6 No 3, March 2017
-
Vol 6 No 2, February 2017
-
Vol 6 No 1, January 2017
-
Vol 5 No 12, December 2016
-
Vol 5 No 11, November 2016
-
Vol 5 No 10, October 2016
-
Vol 5 No 9, September 2016
-
Vol 5 No 8, August 2016
-
Vol 5 No 7, July 2016
-
Vol 5 No 6, June 2016
-
Vol 5 No 5, May 2016
-
Vol 5 No 4, April 2016
-
Vol 5 No 3, March 2016
-
Vol 5 No 2, February 2016
-
Vol 5 No 1, January 2016
-
Vol 4 No 12, December 2015
-
Vol 4 No 11, November 2015
-
Vol 4 No 10, October 2015
Cover Story Current Issue

The prevalence of obesity continues to increase worldwide due to complex behavioral, genetic, and environmental factors. Obesity is a major contributor to metabolic diseases including type 2 diabetes, hypertension, and cardiovascular disease. Tissue crosstalk through autocrine, paracrine, and endocrine signals are critical regulators of energy and nutrient homeostasis.
Sharon O. Jensen-Cody, Matthew J. Potthoff
Current Issue
White adipose remodeling during browning in mice involves YBX1 to drive thermogenic commitment

Objective
Increasing adaptive thermogenesis by stimulating browning in white adipose tissue is a promising method of improving metabolic health. However, the molecular mechanisms underlying this transition remain elusive. Our study examined the molecular determinants driving the differentiation of precursor cells into thermogenic adipocytes.
Methods
In this study, we conducted temporal high-resolution proteomic analysis of subcutaneous white adipose tissue (scWAT) after cold exposure in mice. This was followed by loss- and gain-of-function experiments using siRNA-mediated knockdown and CRISPRa-mediated induction of gene expression, respectively, to evaluate the function of the transcriptional regulator Y box-binding protein 1 (YBX1) during adipogenesis of brown pre-adipocytes and mesenchymal stem cells. Transcriptomic analysis of mesenchymal stem cells following induction of endogenous Ybx1 expression was conducted to elucidate transcriptomic events controlled by YBX1 during adipogenesis.
Results
Our proteomics analysis uncovered 509 proteins differentially regulated by cold in a time-dependent manner. Overall, 44 transcriptional regulators were acutely upregulated following cold exposure, among which included the cold-shock domain containing protein YBX1, peaking after 24 h. Cold-induced upregulation of YBX1 also occurred in brown adipose tissue, but not in visceral white adipose tissue, suggesting a role of YBX1 in thermogenesis. This role was confirmed by Ybx1 knockdown in brown and brite preadipocytes, which significantly impaired their thermogenic potential. Conversely, inducing Ybx1 expression in mesenchymal stem cells during adipogenesis promoted browning concurrent with an increased expression of thermogenic markers and enhanced mitochondrial respiration. At a molecular level, our transcriptomic analysis showed that YBX1 regulates a subset of genes, including the histone H3K9 demethylase Jmjd1c, to promote thermogenic adipocyte differentiation.
Conclusion
Our study mapped the dynamic proteomic changes of murine scWAT during browning and identified YBX1 as a novel factor coordinating the genomic mechanisms by which preadipocytes commit to brite/beige lineage.
White adipose remodeling during browning in mice involves YBX1 to drive thermogenic commitment

Objective
Increasing adaptive thermogenesis by stimulating browning in white adipose tissue is a promising method of improving metabolic health. However, the molecular mechanisms underlying this transition remain elusive. Our study examined the molecular determinants driving the differentiation of precursor cells into thermogenic adipocytes.
Methods
In this study, we conducted temporal high-resolution proteomic analysis of subcutaneous white adipose tissue (scWAT) after cold exposure in mice. This was followed by loss- and gain-of-function experiments using siRNA-mediated knockdown and CRISPRa-mediated induction of gene expression, respectively, to evaluate the function of the transcriptional regulator Y box-binding protein 1 (YBX1) during adipogenesis of brown pre-adipocytes and mesenchymal stem cells. Transcriptomic analysis of mesenchymal stem cells following induction of endogenous Ybx1 expression was conducted to elucidate transcriptomic events controlled by YBX1 during adipogenesis.
Results
Our proteomics analysis uncovered 509 proteins differentially regulated by cold in a time-dependent manner. Overall, 44 transcriptional regulators were acutely upregulated following cold exposure, among which included the cold-shock domain containing protein YBX1, peaking after 24 h. Cold-induced upregulation of YBX1 also occurred in brown adipose tissue, but not in visceral white adipose tissue, suggesting a role of YBX1 in thermogenesis. This role was confirmed by Ybx1 knockdown in brown and brite preadipocytes, which significantly impaired their thermogenic potential. Conversely, inducing Ybx1 expression in mesenchymal stem cells during adipogenesis promoted browning concurrent with an increased expression of thermogenic markers and enhanced mitochondrial respiration. At a molecular level, our transcriptomic analysis showed that YBX1 regulates a subset of genes, including the histone H3K9 demethylase Jmjd1c, to promote thermogenic adipocyte differentiation.
Conclusion
Our study mapped the dynamic proteomic changes of murine scWAT during browning and identified YBX1 as a novel factor coordinating the genomic mechanisms by which preadipocytes commit to brite/beige lineage.
The 60 Second Metabolist
In this section authors briefly report on their work recently published in Molecular Metabolism.
Watch the most recent interviews by clicking the video still.
Here is a video of Vimeo. When the iframes is activated, a connection to Vimeo is established and, if necessary, cookies from Vimeo are also used. For further information on cookies policy click here.
Here is a video of Vimeo. When the iframes is activated, a connection to Vimeo is established and, if necessary, cookies from Vimeo are also used. For further information on cookies policy click here.