-
Vol 44, February 2021 - current issue
-
Vol 27, September 2019
-
Vol 26, August 2019
-
Vol 25, July 2019
-
Vol 24, June 2019
-
Vol 23, May 2019
-
Vol 22, April 2019
-
Vol 21, March 2019
-
Vol 20, February 2019
-
Vol 19, January 2019
-
Vol 18, December 2018
-
Vol 17, November 2018
-
Vol 16, October 2018
-
Vol 15, September 2018
-
Vol 14, August 2018
-
Vol 13, July 2018
-
Vol 12, June 2018
-
Vol 11, May 2018
-
Vol 10, April 2018
-
Vol 9, March 2018
-
Vol 8, February 2018
-
Vol 7, January 2018
-
Vol 6 No 12, December 2017
-
Vol 6 No 11, November 2017
-
Vol 6 No 10, October 2017
-
Vol 6 No 9, September 2017
-
Vol 6 No 8, August 2017
-
Vol 6 No 7, July 2017
-
Vol 6 No 6, June 2017
-
Vol 6 No 5, May 2017
-
Vol 6 No 4, April 2017
-
Vol 6 No 3, March 2017
-
Vol 6 No 2, February 2017
-
Vol 6 No 1, January 2017
-
Vol 5 No 12, December 2016
-
Vol 5 No 11, November 2016
-
Vol 5 No 10, October 2016
-
Vol 5 No 9, September 2016
-
Vol 5 No 8, August 2016
-
Vol 5 No 7, July 2016
-
Vol 5 No 6, June 2016
-
Vol 5 No 5, May 2016
-
Vol 5 No 4, April 2016
-
Vol 5 No 3, March 2016
-
Vol 5 No 2, February 2016
-
Vol 5 No 1, January 2016
-
Vol 4 No 12, December 2015
-
Vol 4 No 11, November 2015
-
Vol 4 No 10, October 2015
Cover Story Current Issue

The prevalence of obesity continues to increase worldwide due to complex behavioral, genetic, and environmental factors. Obesity is a major contributor to metabolic diseases including type 2 diabetes, hypertension, and cardiovascular disease. Tissue crosstalk through autocrine, paracrine, and endocrine signals are critical regulators of energy and nutrient homeostasis.
Sharon O. Jensen-Cody, Matthew J. Potthoff
Current Issue
Amylin receptor insensitivity impairs hypothalamic POMC neuron differentiation in the male offspring of maternal high-fat diet-fed mice

Objective
Amylin was found to regulate glucose and lipid metabolism by acting on the arcuate nucleus of the hypothalamus (ARC). Maternal high-fat diet (HFD) induces sex-specific metabolic diseases mediated by the ARC in offspring. This study was performed to explore 1) the effect of maternal HFD-induced alterations in amylin on the differentiation of hypothalamic neurons and metabolic disorders in male offspring and 2) the specific molecular mechanism underlying the regulation of amylin and its receptor in response to maternal HFD.
Methods
Maternal HFD and gestational hyper-amylin mice models were established to explore the role of hypothalamic amylin and receptor activity-modifying protein 3 (Ramp3) in regulating offspring metabolism. RNA pull-down, mass spectrometry, RNA immunoprecipitation, and RNA decay assays were performed to investigate the mechanism underlying the influence of maternal HFD on Ramp3 deficiency in the fetal hypothalamus.
Results
Male offspring with maternal HFD grew heavier and developed metabolic disorders, whereas female offspring with maternal HFD showed a slight increase in body weight and did not develop metabolic disorders compared to those exposed to maternal normal chow diet (NCD). Male offspring exposed to a maternal HFD had hyperamylinemia from birth until adulthood, which was inconsistent with offspring exposed to maternal NCD. Hyperamylinemia in the maternal HFD-exposed male offspring might be attributed to amylin accumulation following Ramp3 deficiency in the fetal hypothalamus. After Ramp3knockdown in hypothalamic neural stem cells (htNSCs), amylin was found to fail to promote the differentiation of anorexigenic alpha-melanocyte-stimulating hormone-proopiomelanocortin (α-MSH-POMC) neurons but not orexigenic agouti-related protein-neuropeptide Y (AgRP-Npy) neurons. An investigation of the mechanism involved showed that IGF2BP1 could specifically bind to Ramp3 in htNSCs and maintain its mRNA stability. Downregulation of IGF2BP1 in htNSCs in the HFD group could decrease Ramp3 expression and lead to an impairment of α-MSH-POMC neuron differentiation.
Conclusions
These findings suggest that gestational exposure to HFD decreases the expression of IGF2BP1 in the hypothalami of male offspring and destabilizes Ramp3 mRNA, which leads to amylin resistance. The subsequent impairment of POMC neuron differentiation induces sex-specific metabolic disorders in adulthood.
Amylin receptor insensitivity impairs hypothalamic POMC neuron differentiation in the male offspring of maternal high-fat diet-fed mice

Objective
Amylin was found to regulate glucose and lipid metabolism by acting on the arcuate nucleus of the hypothalamus (ARC). Maternal high-fat diet (HFD) induces sex-specific metabolic diseases mediated by the ARC in offspring. This study was performed to explore 1) the effect of maternal HFD-induced alterations in amylin on the differentiation of hypothalamic neurons and metabolic disorders in male offspring and 2) the specific molecular mechanism underlying the regulation of amylin and its receptor in response to maternal HFD.
Methods
Maternal HFD and gestational hyper-amylin mice models were established to explore the role of hypothalamic amylin and receptor activity-modifying protein 3 (Ramp3) in regulating offspring metabolism. RNA pull-down, mass spectrometry, RNA immunoprecipitation, and RNA decay assays were performed to investigate the mechanism underlying the influence of maternal HFD on Ramp3 deficiency in the fetal hypothalamus.
Results
Male offspring with maternal HFD grew heavier and developed metabolic disorders, whereas female offspring with maternal HFD showed a slight increase in body weight and did not develop metabolic disorders compared to those exposed to maternal normal chow diet (NCD). Male offspring exposed to a maternal HFD had hyperamylinemia from birth until adulthood, which was inconsistent with offspring exposed to maternal NCD. Hyperamylinemia in the maternal HFD-exposed male offspring might be attributed to amylin accumulation following Ramp3 deficiency in the fetal hypothalamus. After Ramp3knockdown in hypothalamic neural stem cells (htNSCs), amylin was found to fail to promote the differentiation of anorexigenic alpha-melanocyte-stimulating hormone-proopiomelanocortin (α-MSH-POMC) neurons but not orexigenic agouti-related protein-neuropeptide Y (AgRP-Npy) neurons. An investigation of the mechanism involved showed that IGF2BP1 could specifically bind to Ramp3 in htNSCs and maintain its mRNA stability. Downregulation of IGF2BP1 in htNSCs in the HFD group could decrease Ramp3 expression and lead to an impairment of α-MSH-POMC neuron differentiation.
Conclusions
These findings suggest that gestational exposure to HFD decreases the expression of IGF2BP1 in the hypothalami of male offspring and destabilizes Ramp3 mRNA, which leads to amylin resistance. The subsequent impairment of POMC neuron differentiation induces sex-specific metabolic disorders in adulthood.
The 60 Second Metabolist
In this section authors briefly report on their work recently published in Molecular Metabolism.
Watch the most recent interviews by clicking the video still.
Here is a video of Vimeo. When the iframes is activated, a connection to Vimeo is established and, if necessary, cookies from Vimeo are also used. For further information on cookies policy click here.
Here is a video of Vimeo. When the iframes is activated, a connection to Vimeo is established and, if necessary, cookies from Vimeo are also used. For further information on cookies policy click here.