Cover Story Current Issue

The high prevalence of obesity is associated with increased mortality because of various comorbidities evoked by an increase in adiposity. Type II diabetes and cardiovascular disease are major medical conditions commonly linked to alterations in the homeostatic pathways that regulate energy homeostasis. As a master regulator of energy balance, the brain integrates peripheral signals and, in turn, modulates feeding behavior and the activity of the autonomic nervous system. The hypothalamus acts as the main hub that receives and integrates peripheral signals.

Mohamed Rouabhi, Deng-Fu Guo, Donald A. Morgan, Zhiyong Zhu, ... Kamal Rahmouni

Full text

 

Current Issue

Loss of mitochondrial aconitase promotes colorectal cancer progression via SCD1-mediated lipid remodeling

Xin You, Jingyu Tian, Hui Zhang, Yunhua Guo, ... Yumin Hu

Objective

Mitochondrial aconitase (ACO2) is an essential enzyme that bridges the TCA cycle and lipid metabolism. However, its role in cancer development remains to be elucidated. The metabolic subtype of colorectal cancer (CRC) was recently established. We investigated ACO2's potential role in CRC progression through mediating metabolic alterations.

Methods

We compared the mRNA and protein expression of ACO2 between paired CRC and non-tumor tissues from 353 patients. Correlations between ACO2 levels and clinicopathological features were examined. CRC cell lines with knockdown or overexpression of ACO2 were analyzed for cell proliferation and tumor growth. Metabolomics and stable isotope tracing analyses were used to study the metabolic alterations induced by loss of ACO2.

Results

ACO2 decreased in >50% of CRC samples compared with matched non-tumor tissues. Decreased ACO2 levels correlated with advanced disease stage (P < 0.001) and shorter patient survival (P < 0.001). Knockdown of ACO2 in CRC cells promoted cell proliferation and tumor formation, while ectopic expression of ACO2 restrained tumor growth. Specifically, blockade of ACO2 caused a reduction in TCA cycle intermediates and suppression of mitochondrial oxidative phosphorylation, resulting in an increase in glycolysis and elevated citrate flux for fatty acid and lipid synthesis. Increased citrate flux induced upregulation of stearoyl-CoA desaturase (SCD1), which enhanced lipid desaturation in ACO2-deficent cells to favor colorectal cancer growth. Pharmacological inhibition of SCD selectively reduced tumor formation of CRC with ACO2 deficiency.

Conclusions

Our study demonstrated that the rewiring metabolic pathway maintains CRC survival during compromised TCA cycles and characterized the therapeutic vulnerability of lipid desaturation in a meaningful subset of CRC with mitochondrial dysfunction.

Loss of mitochondrial aconitase promotes colorectal cancer progression via SCD1-mediated lipid remodeling

Xin You, Jingyu Tian, Hui Zhang, Yunhua Guo, ... Yumin Hu

Objective

Mitochondrial aconitase (ACO2) is an essential enzyme that bridges the TCA cycle and lipid metabolism. However, its role in cancer development remains to be elucidated. The metabolic subtype of colorectal cancer (CRC) was recently established. We investigated ACO2's potential role in CRC progression through mediating metabolic alterations.

Methods

We compared the mRNA and protein expression of ACO2 between paired CRC and non-tumor tissues from 353 patients. Correlations between ACO2 levels and clinicopathological features were examined. CRC cell lines with knockdown or overexpression of ACO2 were analyzed for cell proliferation and tumor growth. Metabolomics and stable isotope tracing analyses were used to study the metabolic alterations induced by loss of ACO2.

Results

ACO2 decreased in >50% of CRC samples compared with matched non-tumor tissues. Decreased ACO2 levels correlated with advanced disease stage (P < 0.001) and shorter patient survival (P < 0.001). Knockdown of ACO2 in CRC cells promoted cell proliferation and tumor formation, while ectopic expression of ACO2 restrained tumor growth. Specifically, blockade of ACO2 caused a reduction in TCA cycle intermediates and suppression of mitochondrial oxidative phosphorylation, resulting in an increase in glycolysis and elevated citrate flux for fatty acid and lipid synthesis. Increased citrate flux induced upregulation of stearoyl-CoA desaturase (SCD1), which enhanced lipid desaturation in ACO2-deficent cells to favor colorectal cancer growth. Pharmacological inhibition of SCD selectively reduced tumor formation of CRC with ACO2 deficiency.

Conclusions

Our study demonstrated that the rewiring metabolic pathway maintains CRC survival during compromised TCA cycles and characterized the therapeutic vulnerability of lipid desaturation in a meaningful subset of CRC with mitochondrial dysfunction.

The 60 Second Metabolist

In this section authors briefly report on their work recently published in Molecular Metabolism.

Watch the most recent interviews by clicking the video still. 

Here is a video of Vimeo. When the iframes is activated, a connection to Vimeo is established and, if necessary, cookies from Vimeo are also used. For further information on cookies policy click here.

Here is a video of Vimeo. When the iframes is activated, a connection to Vimeo is established and, if necessary, cookies from Vimeo are also used. For further information on cookies policy click here.