Cover Story Current Issue

White adipose tissue (WAT) is a complex organ that plays a central role in systemic energy balance through its interrelated metabolic, endocrine, and immune functions. Adipocytes, the parenchymal cells of adipose tissue, have diverse functions that include storage and mobilization of lipids. They also release endocrine signals that report energy status to the brain, regulating metabolic functions in peripheral organs. Importantly, the metabolic character of white adipocytes is flexible, with cells capable of assuming distinct anabolic and catabolic/thermogenic phenotypes, often within the same adipose tissue depot

Elizabeth A. Rondini, Vanesa D. Ramseyer, Rayanne B. Burl, Roger Pique-Regi, James G. Granneman

Full text

 

Current Issue

KBP-066A, a long-acting dual amylin and calcitonin receptor agonist, induces weight loss and improves glycemic control in obese and diabetic rats

K.V. Andreassen, A.T. Larsen, N. Sonne, K.E. Mohamed, ... K. Henriksen

Objective

Dual amylin and calcitonin receptor agonists (DACRAs) are novel therapeutic agents that not only improve insulin sensitivity but also work as an adjunct to established T2DM therapies. DACRAs are currently administered once daily, though it is unknown whether DACRAs with increased plasma half-life can be developed as a once-weekly therapy.

Methods

The in vitro potencies of the KBP-066A and KBP-066 (non-acylated) were assessed using reporter assays. Acylation functionality was investigated by a combination of pharmacokinetics and acute food intake in rats. in vivo efficacies were investigated head-to-head in obese (HFD) and T2D (ZDF) models.

Results

In in vitro, KBP-066A activated the CTR and AMY-R potently, with no off-target activity. Acylation functionality was confirmed by acute tests, as KBP-066A demonstrated a prolonged PK and PD response compared to KBP-066. Both compounds induced potent and dose-dependent weight loss in the HFD rat model. In ZDF rats, fasting blood glucose/fasting insulin levels (tAUC) were reduced by 39%/50% and 36%/47% for KBP-066 and KBP-066A, respectively. This effect resulted in a 31% and 46% vehicle-corrected reduction in HbA1c at the end of the study for KBP-066 and KBP-066A, respectively.

Conclusions

Here, we present pre-clinical data on an acylated DACRA, KBP-066A. The in vivoefficacy of KBP-066A is significantly improved compared to its non-acylated variant regarding weight loss and glycemic control in obese (HFD) and obese diabetic rats (ZDF). This compendium of pre-clinical studies highlights KBP-066A as a promising, once-weekly therapeutic agent for treating T2DM and obesity.

KBP-066A, a long-acting dual amylin and calcitonin receptor agonist, induces weight loss and improves glycemic control in obese and diabetic rats

K.V. Andreassen, A.T. Larsen, N. Sonne, K.E. Mohamed, ... K. Henriksen

Objective

Dual amylin and calcitonin receptor agonists (DACRAs) are novel therapeutic agents that not only improve insulin sensitivity but also work as an adjunct to established T2DM therapies. DACRAs are currently administered once daily, though it is unknown whether DACRAs with increased plasma half-life can be developed as a once-weekly therapy.

Methods

The in vitro potencies of the KBP-066A and KBP-066 (non-acylated) were assessed using reporter assays. Acylation functionality was investigated by a combination of pharmacokinetics and acute food intake in rats. in vivo efficacies were investigated head-to-head in obese (HFD) and T2D (ZDF) models.

Results

In in vitro, KBP-066A activated the CTR and AMY-R potently, with no off-target activity. Acylation functionality was confirmed by acute tests, as KBP-066A demonstrated a prolonged PK and PD response compared to KBP-066. Both compounds induced potent and dose-dependent weight loss in the HFD rat model. In ZDF rats, fasting blood glucose/fasting insulin levels (tAUC) were reduced by 39%/50% and 36%/47% for KBP-066 and KBP-066A, respectively. This effect resulted in a 31% and 46% vehicle-corrected reduction in HbA1c at the end of the study for KBP-066 and KBP-066A, respectively.

Conclusions

Here, we present pre-clinical data on an acylated DACRA, KBP-066A. The in vivoefficacy of KBP-066A is significantly improved compared to its non-acylated variant regarding weight loss and glycemic control in obese (HFD) and obese diabetic rats (ZDF). This compendium of pre-clinical studies highlights KBP-066A as a promising, once-weekly therapeutic agent for treating T2DM and obesity.

2020 impact factor: 7.4

The 60 Second Metabolist

In this section authors briefly report on their work recently published in Molecular Metabolism.

Watch the most recent interviews by clicking the video still. 

Here is a video of Vimeo. When the iframes is activated, a connection to Vimeo is established and, if necessary, cookies from Vimeo are also used. For further information on cookies policy click here.

Here is a video of Vimeo. When the iframes is activated, a connection to Vimeo is established and, if necessary, cookies from Vimeo are also used. For further information on cookies policy click here.