Cover Story Current Issue

Non-alcoholic fatty liver disease (NAFLD) encompasses a set of pathologies associated with ectopic lipid accumulationin hepatocytes. NAFLD can progress to non-alcoholic steatohepatitis (NASH), an inflammatory condition which is increasing in prevalence in parallel with other diseases connected to lipid metabolism, such as type 2 diabetes and cardiovascular disease. NASH is characterized by hepatic necrosis, increased inflammatory signaling, immune cell infiltration, and the potential to progress to fibrosis, cirrhosis, hepatocellular carcinoma, and ultimately liver failure.

David Montefusco, Maryam Jamil, Melissa A. Maczis, William Schroeder, ... L. Ashley Cowart

Full text

 

Current Issue

In vivo metabolic effects after acute activation of skeletal muscle Gs signaling

Jaroslawna Meister, Derek B.J. Bone, Jonas R. Knudsen, Luiz F. Barella, ... Jürgen Wess

Objective

The goal of this study was to determine the glucometabolic effects of acute activation of Gs signaling in skeletal muscle (SKM) in vivo and its contribution to whole-body glucose homeostasis.

Methods

To address this question, we studied mice that express a Gs-coupled designer G protein-coupled receptor (Gs-DREADD or GsD) selectively in skeletal muscle. We also identified two Gs-coupled GPCRs that are endogenously expressed by SKM at relatively high levels (β2-adrenergic receptor and CRF2 receptor) and studied the acute metabolic effects of activating these receptors in vivo by highly selective agonists (clenbuterol and urocortin 2 (UCN2), respectively).

Results

Acute stimulation of GsD signaling in SKM impaired glucose tolerance in lean and obese mice by decreasing glucose uptake selectively into SKM. The acute metabolic effects following agonist activation of β2-adrenergic and, potentially, CRF2 receptors appear primarily mediated by altered insulin release. Clenbuterol injection improved glucose tolerance by increasing insulin secretion in lean mice. In SKM, clenbuterol stimulated glycogen breakdown. UCN2 injection resulted in decreased glucose tolerance associated with lower plasma insulin levels. The acute metabolic effects of UCN2 were not mediated by SKM Gs signaling.

Conclusions

Selective activation of Gs signaling in SKM causes an acute increase in blood glucose levels. However, acute in vivo stimulation of endogenous Gs-coupled receptors enriched in SKM has only a limited impact on whole-body glucose homeostasis, most likely due to the fact that these receptors are also expressed by pancreatic islets where they modulate insulin release.

In vivo metabolic effects after acute activation of skeletal muscle Gs signaling

Jaroslawna Meister, Derek B.J. Bone, Jonas R. Knudsen, Luiz F. Barella, ... Jürgen Wess

Objective

The goal of this study was to determine the glucometabolic effects of acute activation of Gs signaling in skeletal muscle (SKM) in vivo and its contribution to whole-body glucose homeostasis.

Methods

To address this question, we studied mice that express a Gs-coupled designer G protein-coupled receptor (Gs-DREADD or GsD) selectively in skeletal muscle. We also identified two Gs-coupled GPCRs that are endogenously expressed by SKM at relatively high levels (β2-adrenergic receptor and CRF2 receptor) and studied the acute metabolic effects of activating these receptors in vivo by highly selective agonists (clenbuterol and urocortin 2 (UCN2), respectively).

Results

Acute stimulation of GsD signaling in SKM impaired glucose tolerance in lean and obese mice by decreasing glucose uptake selectively into SKM. The acute metabolic effects following agonist activation of β2-adrenergic and, potentially, CRF2 receptors appear primarily mediated by altered insulin release. Clenbuterol injection improved glucose tolerance by increasing insulin secretion in lean mice. In SKM, clenbuterol stimulated glycogen breakdown. UCN2 injection resulted in decreased glucose tolerance associated with lower plasma insulin levels. The acute metabolic effects of UCN2 were not mediated by SKM Gs signaling.

Conclusions

Selective activation of Gs signaling in SKM causes an acute increase in blood glucose levels. However, acute in vivo stimulation of endogenous Gs-coupled receptors enriched in SKM has only a limited impact on whole-body glucose homeostasis, most likely due to the fact that these receptors are also expressed by pancreatic islets where they modulate insulin release.

2021 impact factor: 8.568

The 60 Second Metabolist

In this section authors briefly report on their work recently published in Molecular Metabolism.

Watch the most recent interviews by clicking the video still. 

Here is a video of Vimeo. When the iframes is activated, a connection to Vimeo is established and, if necessary, cookies from Vimeo are also used. For further information on cookies policy click here.