-
Vol 62, August 2022 - current issue
-
Vol 27, September 2019
-
Vol 26, August 2019
-
Vol 25, July 2019
-
Vol 24, June 2019
-
Vol 23, May 2019
-
Vol 22, April 2019
-
Vol 21, March 2019
-
Vol 20, February 2019
-
Vol 19, January 2019
-
Vol 18, December 2018
-
Vol 17, November 2018
-
Vol 16, October 2018
-
Vol 15, September 2018
-
Vol 14, August 2018
-
Vol 13, July 2018
-
Vol 12, June 2018
-
Vol 11, May 2018
-
Vol 10, April 2018
-
Vol 9, March 2018
-
Vol 8, February 2018
-
Vol 7, January 2018
-
Vol 6 No 12, December 2017
-
Vol 6 No 11, November 2017
-
Vol 6 No 10, October 2017
-
Vol 6 No 9, September 2017
-
Vol 6 No 8, August 2017
-
Vol 6 No 7, July 2017
-
Vol 6 No 6, June 2017
-
Vol 6 No 5, May 2017
-
Vol 6 No 4, April 2017
-
Vol 6 No 3, March 2017
-
Vol 6 No 2, February 2017
-
Vol 6 No 1, January 2017
-
Vol 5 No 12, December 2016
-
Vol 5 No 11, November 2016
-
Vol 5 No 10, October 2016
-
Vol 5 No 9, September 2016
-
Vol 5 No 8, August 2016
-
Vol 5 No 7, July 2016
-
Vol 5 No 6, June 2016
-
Vol 5 No 5, May 2016
-
Vol 5 No 4, April 2016
-
Vol 5 No 3, March 2016
-
Vol 5 No 2, February 2016
-
Vol 5 No 1, January 2016
-
Vol 4 No 12, December 2015
-
Vol 4 No 11, November 2015
-
Vol 4 No 10, October 2015
Cover Story Current Issue

Non-alcoholic fatty liver disease (NAFLD) encompasses a set of pathologies associated with ectopic lipid accumulationin hepatocytes. NAFLD can progress to non-alcoholic steatohepatitis (NASH), an inflammatory condition which is increasing in prevalence in parallel with other diseases connected to lipid metabolism, such as type 2 diabetes and cardiovascular disease. NASH is characterized by hepatic necrosis, increased inflammatory signaling, immune cell infiltration, and the potential to progress to fibrosis, cirrhosis, hepatocellular carcinoma, and ultimately liver failure.
David Montefusco, Maryam Jamil, Melissa A. Maczis, William Schroeder, ... L. Ashley Cowart
Current Issue
In vivo metabolic effects after acute activation of skeletal muscle Gs signaling
Objective
The goal of this study was to determine the glucometabolic effects of acute activation of Gs signaling in skeletal muscle (SKM) in vivo and its contribution to whole-body glucose homeostasis.
Methods
To address this question, we studied mice that express a Gs-coupled designer G protein-coupled receptor (Gs-DREADD or GsD) selectively in skeletal muscle. We also identified two Gs-coupled GPCRs that are endogenously expressed by SKM at relatively high levels (β2-adrenergic receptor and CRF2 receptor) and studied the acute metabolic effects of activating these receptors in vivo by highly selective agonists (clenbuterol and urocortin 2 (UCN2), respectively).
Results
Acute stimulation of GsD signaling in SKM impaired glucose tolerance in lean and obese mice by decreasing glucose uptake selectively into SKM. The acute metabolic effects following agonist activation of β2-adrenergic and, potentially, CRF2 receptors appear primarily mediated by altered insulin release. Clenbuterol injection improved glucose tolerance by increasing insulin secretion in lean mice. In SKM, clenbuterol stimulated glycogen breakdown. UCN2 injection resulted in decreased glucose tolerance associated with lower plasma insulin levels. The acute metabolic effects of UCN2 were not mediated by SKM Gs signaling.
Conclusions
Selective activation of Gs signaling in SKM causes an acute increase in blood glucose levels. However, acute in vivo stimulation of endogenous Gs-coupled receptors enriched in SKM has only a limited impact on whole-body glucose homeostasis, most likely due to the fact that these receptors are also expressed by pancreatic islets where they modulate insulin release.
In vivo metabolic effects after acute activation of skeletal muscle Gs signaling
Objective
The goal of this study was to determine the glucometabolic effects of acute activation of Gs signaling in skeletal muscle (SKM) in vivo and its contribution to whole-body glucose homeostasis.
Methods
To address this question, we studied mice that express a Gs-coupled designer G protein-coupled receptor (Gs-DREADD or GsD) selectively in skeletal muscle. We also identified two Gs-coupled GPCRs that are endogenously expressed by SKM at relatively high levels (β2-adrenergic receptor and CRF2 receptor) and studied the acute metabolic effects of activating these receptors in vivo by highly selective agonists (clenbuterol and urocortin 2 (UCN2), respectively).
Results
Acute stimulation of GsD signaling in SKM impaired glucose tolerance in lean and obese mice by decreasing glucose uptake selectively into SKM. The acute metabolic effects following agonist activation of β2-adrenergic and, potentially, CRF2 receptors appear primarily mediated by altered insulin release. Clenbuterol injection improved glucose tolerance by increasing insulin secretion in lean mice. In SKM, clenbuterol stimulated glycogen breakdown. UCN2 injection resulted in decreased glucose tolerance associated with lower plasma insulin levels. The acute metabolic effects of UCN2 were not mediated by SKM Gs signaling.
Conclusions
Selective activation of Gs signaling in SKM causes an acute increase in blood glucose levels. However, acute in vivo stimulation of endogenous Gs-coupled receptors enriched in SKM has only a limited impact on whole-body glucose homeostasis, most likely due to the fact that these receptors are also expressed by pancreatic islets where they modulate insulin release.
2021 impact factor: 8.568
The 60 Second Metabolist
In this section authors briefly report on their work recently published in Molecular Metabolism.
Watch the most recent interviews by clicking the video still.
Here is a video of Vimeo. When the iframes is activated, a connection to Vimeo is established and, if necessary, cookies from Vimeo are also used. For further information on cookies policy click here.