Cover Story Current Issue

Altered amino acid metabolism is increasingly appreciated as a key driver in the pathology of multiple diseases, including metabolic syndrome, cancer, and neurological diseaseSphingolipids (SLs) are synthesized from serine and fatty acyl-CoAs by serine palmitoyltransferase (SPT) and are critical signaling molecules and membrane components that are enriched in the nervous system and retina. When serine levels are low, alanine (or glycine) is used as a substrate by SPT to yield non-canonical 1-deoxysphingolipids (doxSLs) that drive neuropathy and cellular dysfunction through diverse mechanisms. This highlights a potential mechanism for crosstalk between amino acid metabolism and SL biosynthesis in the context of neurological dysfunction. Numerous heritable neurological and retinal disorders are causative or linked to mutations in genes encoding SL-metabolizing enzymes, including amyotrophic lateral sclerosis (ALS), Tay-Sachs, Niemann-Pick disease, Gaucher disease, Macular telangiectasia type II (MacTel), and hereditary sensory and autonomic neuropathy type 1 (HSAN1).

Courtney R. Green, Roberto Bonelli, Brendan R.E. Ansell, Simone Tzaridis, ... Marin L. Gantner

Full text

 

Current Issue

Antimetabolic cooperativity with the clinically approved l-asparaginase and tyrosine kinase inhibitors to eradicate CML stem cells

Anne Trinh, Raeeka Khamari, Quentin Fovez, François-Xavier Mahon, ... Philippe Marchetti

Objective

Long-term treatment with tyrosine kinase inhibitors (TKI) represents an effective cure for chronic myeloid leukemia (CML) patients and discontinuation of TKI therapy is now proposed to patient with deep molecular responses. However, evidence demonstrating that TKI are unable to fully eradicate dormant leukemic stem cells (LSC) indicate that new therapeutic strategies are needed to control LSC and to prevent relapse. In this study we investigated the metabolic pathways responsible for CML surviving to imatinib exposure and its potential therapeutic utility to improve the efficacy of TKI against stem-like CML cells.

Methods

Using complementary cell-based techniques, metabolism was characterized in a large panel of BCR-ABL+ cell lines as well as primary CD34+ stem-like cells from CML patients exposed to TKI and L-Asparaginases. Colony forming cell (CFC) assay and flow cytometry were used to identify CML progenitor and stem like-cells. Preclinical models of leukemia dormancy were used to test the effect of treatments.

Results

Although TKI suppressed glycolysis, compensatory glutamine-dependent mitochondrial oxidation supported ATP synthesis and CML cell survival. Glutamine metabolism was inhibited by L-asparaginases such as Kidrolase or Erwinase without inducing predominant CML cell death. However, clinically relevant concentrations of TKI render CML cells susceptible to Kidrolase. The combination of TKI with Lasparaginase reactivates the intinsic apoptotic pathway leading to efficient CML cell death.

Conclusion

Targeting glutamine metabolism with the FDA-approved drug, Kidrolase in combination with TKI that suppress glycolysis represents an effective and widely applicable therapeutic strategy for eradicating stem-like CML cells.

Antimetabolic cooperativity with the clinically approved l-asparaginase and tyrosine kinase inhibitors to eradicate CML stem cells

Anne Trinh, Raeeka Khamari, Quentin Fovez, François-Xavier Mahon, ... Philippe Marchetti

Objective

Long-term treatment with tyrosine kinase inhibitors (TKI) represents an effective cure for chronic myeloid leukemia (CML) patients and discontinuation of TKI therapy is now proposed to patient with deep molecular responses. However, evidence demonstrating that TKI are unable to fully eradicate dormant leukemic stem cells (LSC) indicate that new therapeutic strategies are needed to control LSC and to prevent relapse. In this study we investigated the metabolic pathways responsible for CML surviving to imatinib exposure and its potential therapeutic utility to improve the efficacy of TKI against stem-like CML cells.

Methods

Using complementary cell-based techniques, metabolism was characterized in a large panel of BCR-ABL+ cell lines as well as primary CD34+ stem-like cells from CML patients exposed to TKI and L-Asparaginases. Colony forming cell (CFC) assay and flow cytometry were used to identify CML progenitor and stem like-cells. Preclinical models of leukemia dormancy were used to test the effect of treatments.

Results

Although TKI suppressed glycolysis, compensatory glutamine-dependent mitochondrial oxidation supported ATP synthesis and CML cell survival. Glutamine metabolism was inhibited by L-asparaginases such as Kidrolase or Erwinase without inducing predominant CML cell death. However, clinically relevant concentrations of TKI render CML cells susceptible to Kidrolase. The combination of TKI with Lasparaginase reactivates the intinsic apoptotic pathway leading to efficient CML cell death.

Conclusion

Targeting glutamine metabolism with the FDA-approved drug, Kidrolase in combination with TKI that suppress glycolysis represents an effective and widely applicable therapeutic strategy for eradicating stem-like CML cells.

2021 impact factor: 8.568

Here is a video of Vimeo. When the iframes is activated, a connection to Vimeo is established and, if necessary, cookies from Vimeo are also used. For further information on cookies policy click here.