Cover Story Current Issue

Alterations in mitochondrial structure and function are commonly observed in adult-onset neurodegenerative diseases. In ALS, mitochondrial dysfunction impairs the efficiency of electron transport chain (ETC) activity and ATP production and leads to the accumulation of reactive oxygen and nitrogen species, abnormal handling of intracellular calcium and cytochrome C release and apoptosis. The extent to which these alterations in mitochondrial functionimpair cellular operations is unclear. Therapeutic intervention based on combating these mitochondrial abnormalities have displayed variable success in mouse models of ALS and humans, as reviewed in Vandoorne et al.

Sean-Patrick Riechers, Jelena Mojsilovic-Petrovic, Tayler B. Belton, Ram P. Chakrabarty, ... Robert G. Kalb

Full text

 

Current Issue

Emerging diabetes therapies: Bringing back the β-cells

G. Basile, M.M.F. Qadir, F. Mauvais-Jarvis, A. Vetere, ... J. Dominguez-Bendala

Background

Stem cell therapies are finally coming of age as a viable alternative to pancreatic islet transplantation for the treatment of insulin-dependent diabetes. Several clinical trials using human embryonic stem cell (hESC)-derived β-like cells are currently underway, with encouraging preliminary results. Remaining challenges notwithstanding, these strategies are widely expected to reduce our reliance on human isolated islets for transplantation procedures, making cell therapies available to millions of diabetic patients. At the same time, advances in our understanding of pancreatic cell plasticity and the molecular mechanisms behind β-cell replication and regeneration have spawned a multitude of translational efforts aimed at inducing β-cell replenishment in situ through pharmacological means, thus circumventing the need for transplantation.

Scope of Review

We discuss here the current state of the art in hESC transplantation, as well as the parallel quest to discover agents capable of either preserving the residual mass of β-cells or inducing their proliferation, transdifferentiation or differentiation from progenitor cells.

Major Conclusions

Stem cell-based replacement therapies in the mold of islet transplantation are already around the corner, but a permanent cure for type 1 diabetes will likely require the endogenous regeneration of β-cells aided by interventions to restore the immune balance. The promise of current research avenues and a strong pipeline of clinical trials designed to tackle these challenges bode well for the realization of this goal.

Emerging diabetes therapies: Bringing back the β-cells

G. Basile, M.M.F. Qadir, F. Mauvais-Jarvis, A. Vetere, ... J. Dominguez-Bendala

Background

Stem cell therapies are finally coming of age as a viable alternative to pancreatic islet transplantation for the treatment of insulin-dependent diabetes. Several clinical trials using human embryonic stem cell (hESC)-derived β-like cells are currently underway, with encouraging preliminary results. Remaining challenges notwithstanding, these strategies are widely expected to reduce our reliance on human isolated islets for transplantation procedures, making cell therapies available to millions of diabetic patients. At the same time, advances in our understanding of pancreatic cell plasticity and the molecular mechanisms behind β-cell replication and regeneration have spawned a multitude of translational efforts aimed at inducing β-cell replenishment in situ through pharmacological means, thus circumventing the need for transplantation.

Scope of Review

We discuss here the current state of the art in hESC transplantation, as well as the parallel quest to discover agents capable of either preserving the residual mass of β-cells or inducing their proliferation, transdifferentiation or differentiation from progenitor cells.

Major Conclusions

Stem cell-based replacement therapies in the mold of islet transplantation are already around the corner, but a permanent cure for type 1 diabetes will likely require the endogenous regeneration of β-cells aided by interventions to restore the immune balance. The promise of current research avenues and a strong pipeline of clinical trials designed to tackle these challenges bode well for the realization of this goal.

2021 impact factor: 7.422

The 60 Second Metabolist

In this section authors briefly report on their work recently published in Molecular Metabolism.

Watch the most recent interviews by clicking the video still. 

Here is a video of Vimeo. When the iframes is activated, a connection to Vimeo is established and, if necessary, cookies from Vimeo are also used. For further information on cookies policy click here.

Here is a video of Vimeo. When the iframes is activated, a connection to Vimeo is established and, if necessary, cookies from Vimeo are also used. For further information on cookies policy click here.