Cover Story Current Issue

Cancer cachexia is a systemic metabolic dysfunction that affects more than 80% of pancreatic cancer patients and is the leading cause of death in 22%–30% of all cancers. Because the cancer spread beyond the pancreas at the time of diagnosis, only about 20% of patients are candidates for surgery. Pancreatic cancer's aggressiveness destabilizes whole-body homeostasis by dismantling the normal network of organs crosstalk. This miss-communication favors the tumor progression during cancer cachexia, which is characterized by devastating body weight lossmuscle atrophy, fat wasting, decreased appetite. The molecular mechanisms underlying these metabolic cues are still being investigated.

Mengistu Lemecha, Jaya Prakash Chalise, Yuki Takamuku, Guoxiang Zhang, ... Keiichi Itakura

Full text

 

Current Issue

Adipose mTORC2 is essential for sensory innervation in white adipose tissue and whole-body energy homeostasis

Irina C. Frei, Diana Weissenberger, Danilo Ritz, Wolf Heusermann, ... Michael N. Hall

 

Objective

Adipose tissue, via sympathetic and possibly sensory neurons, communicates with the central nervous system (CNS) to mediate energy homeostasis. In contrast to the sympathetic nervous system, the morphology, role and regulation of the sensory nervous system in adipose tissue are poorly characterized.

Methods and results

Taking advantage of recent progress in whole-mount three-dimensional imaging, we identified a network of calcitonin gene-related protein (CGRP)-positive sensory neurons in murine white adipose tissue (WAT). We found that adipose mammalian target of rapamycin complex 2 (mTORC2), a major component of the insulin signaling pathway, is required for arborization of sensory neurons, but not of sympathetic neurons. Time course experiments revealed that adipose mTORC2 is required for maintenance of sensory neurons. Furthermore, loss of sensory innervation in WAT coincided with systemic insulin resistance. Finally, we established that neuronal protein growth-associated protein 43 (GAP43) is a marker for sensory neurons in adipose tissue.

Conclusion

Our findings indicate that adipose mTORC2 is necessary for sensory innervation in WAT. In addition, our results suggest that WAT may affect whole-body energy homeostasis via sensory neurons.

Adipose mTORC2 is essential for sensory innervation in white adipose tissue and whole-body energy homeostasis

Irina C. Frei, Diana Weissenberger, Danilo Ritz, Wolf Heusermann, ... Michael N. Hall

 

Objective

Adipose tissue, via sympathetic and possibly sensory neurons, communicates with the central nervous system (CNS) to mediate energy homeostasis. In contrast to the sympathetic nervous system, the morphology, role and regulation of the sensory nervous system in adipose tissue are poorly characterized.

Methods and results

Taking advantage of recent progress in whole-mount three-dimensional imaging, we identified a network of calcitonin gene-related protein (CGRP)-positive sensory neurons in murine white adipose tissue (WAT). We found that adipose mammalian target of rapamycin complex 2 (mTORC2), a major component of the insulin signaling pathway, is required for arborization of sensory neurons, but not of sympathetic neurons. Time course experiments revealed that adipose mTORC2 is required for maintenance of sensory neurons. Furthermore, loss of sensory innervation in WAT coincided with systemic insulin resistance. Finally, we established that neuronal protein growth-associated protein 43 (GAP43) is a marker for sensory neurons in adipose tissue.

Conclusion

Our findings indicate that adipose mTORC2 is necessary for sensory innervation in WAT. In addition, our results suggest that WAT may affect whole-body energy homeostasis via sensory neurons.

2021 impact factor: 8.568

Here is a video of Vimeo. When the iframes is activated, a connection to Vimeo is established and, if necessary, cookies from Vimeo are also used. For further information on cookies policy click here.