Cover Story Current Issue

Cancer cachexia is a systemic metabolic dysfunction that affects more than 80% of pancreatic cancer patients and is the leading cause of death in 22%–30% of all cancers. Because the cancer spread beyond the pancreas at the time of diagnosis, only about 20% of patients are candidates for surgery. Pancreatic cancer's aggressiveness destabilizes whole-body homeostasis by dismantling the normal network of organs crosstalk. This miss-communication favors the tumor progression during cancer cachexia, which is characterized by devastating body weight lossmuscle atrophy, fat wasting, decreased appetite. The molecular mechanisms underlying these metabolic cues are still being investigated.

Mengistu Lemecha, Jaya Prakash Chalise, Yuki Takamuku, Guoxiang Zhang, ... Keiichi Itakura

Full text

 

Current Issue

Peroxisomal regulation of energy homeostasis: Effect on obesity and related metabolic disorders

Brian Kleiboeker, Irfan J. Lodhi

 

Background

Peroxisomes are single membrane-bound organelles named for their role in hydrogen peroxide production and catabolism. However, their cellular functions extend well beyond reactive oxygen species (ROS) metabolism and include fatty acid oxidation of unique substrates that cannot be catabolized in mitochondria, and synthesis of ether lipids and bile acids. Metabolic functions of peroxisomes involve crosstalk with other organelles, including mitochondria, endoplasmic reticulumlipid droplets and lysosomes. Emerging studies suggest that peroxisomes are important regulators of energy homeostasis and that disruption of peroxisomal functions influences the risk for obesity and the associated metabolic disorders, including type 2 diabetes and hepatic steatosis.

Scope of review

Here, we focus on the role of peroxisomes in ether lipid synthesis, β-oxidation and ROS metabolism, given that these functions have been most widely studied and have physiologically relevant implications in systemic metabolism and obesity. Efforts are made to mechanistically link these cellular and systemic processes.

Major conclusions

Circulating plasmalogens, a form of ether lipids, have been identified as inversely correlated biomarkers of obesity. Ether lipids influence metabolic homeostasis through multiple mechanisms, including regulation of mitochondrial morphology and respiration affecting brown fat-mediated thermogenesis, and through regulation of adipose tissue development. Peroxisomal β-oxidation also affects metabolic homeostasis through generation of signaling molecules, such as acetyl-CoA and ROS that inhibit hydrolysis of stored lipids, contributing to development of hepatic steatosis. Oxidative stressresulting from increased peroxisomal β-oxidation-generated ROS in the context of obesity mediates β-cell lipotoxicity. A better understanding of the roles peroxisomes play in regulating and responding to obesity and its complications will provide new opportunities for their treatment.

Peroxisomal regulation of energy homeostasis: Effect on obesity and related metabolic disorders

Brian Kleiboeker, Irfan J. Lodhi

 

Background

Peroxisomes are single membrane-bound organelles named for their role in hydrogen peroxide production and catabolism. However, their cellular functions extend well beyond reactive oxygen species (ROS) metabolism and include fatty acid oxidation of unique substrates that cannot be catabolized in mitochondria, and synthesis of ether lipids and bile acids. Metabolic functions of peroxisomes involve crosstalk with other organelles, including mitochondria, endoplasmic reticulumlipid droplets and lysosomes. Emerging studies suggest that peroxisomes are important regulators of energy homeostasis and that disruption of peroxisomal functions influences the risk for obesity and the associated metabolic disorders, including type 2 diabetes and hepatic steatosis.

Scope of review

Here, we focus on the role of peroxisomes in ether lipid synthesis, β-oxidation and ROS metabolism, given that these functions have been most widely studied and have physiologically relevant implications in systemic metabolism and obesity. Efforts are made to mechanistically link these cellular and systemic processes.

Major conclusions

Circulating plasmalogens, a form of ether lipids, have been identified as inversely correlated biomarkers of obesity. Ether lipids influence metabolic homeostasis through multiple mechanisms, including regulation of mitochondrial morphology and respiration affecting brown fat-mediated thermogenesis, and through regulation of adipose tissue development. Peroxisomal β-oxidation also affects metabolic homeostasis through generation of signaling molecules, such as acetyl-CoA and ROS that inhibit hydrolysis of stored lipids, contributing to development of hepatic steatosis. Oxidative stressresulting from increased peroxisomal β-oxidation-generated ROS in the context of obesity mediates β-cell lipotoxicity. A better understanding of the roles peroxisomes play in regulating and responding to obesity and its complications will provide new opportunities for their treatment.

2021 impact factor: 8.568

Here is a video of Vimeo. When the iframes is activated, a connection to Vimeo is established and, if necessary, cookies from Vimeo are also used. For further information on cookies policy click here.