-
Volume 69, March 2023 - current issue
-
Vol 27, September 2019
-
Vol 26, August 2019
-
Vol 25, July 2019
-
Vol 24, June 2019
-
Vol 23, May 2019
-
Vol 22, April 2019
-
Vol 21, March 2019
-
Vol 20, February 2019
-
Vol 19, January 2019
-
Vol 18, December 2018
-
Vol 17, November 2018
-
Vol 16, October 2018
-
Vol 15, September 2018
-
Vol 14, August 2018
-
Vol 13, July 2018
-
Vol 12, June 2018
-
Vol 11, May 2018
-
Vol 10, April 2018
-
Vol 9, March 2018
-
Vol 8, February 2018
-
Vol 7, January 2018
-
Vol 6 No 12, December 2017
-
Vol 6 No 11, November 2017
-
Vol 6 No 10, October 2017
-
Vol 6 No 9, September 2017
-
Vol 6 No 8, August 2017
-
Vol 6 No 7, July 2017
-
Vol 6 No 6, June 2017
-
Vol 6 No 5, May 2017
-
Vol 6 No 4, April 2017
-
Vol 6 No 3, March 2017
-
Vol 6 No 2, February 2017
-
Vol 6 No 1, January 2017
-
Vol 5 No 12, December 2016
-
Vol 5 No 11, November 2016
-
Vol 5 No 10, October 2016
-
Vol 5 No 9, September 2016
-
Vol 5 No 8, August 2016
-
Vol 5 No 7, July 2016
-
Vol 5 No 6, June 2016
-
Vol 5 No 5, May 2016
-
Vol 5 No 4, April 2016
-
Vol 5 No 3, March 2016
-
Vol 5 No 2, February 2016
-
Vol 5 No 1, January 2016
-
Vol 4 No 12, December 2015
-
Vol 4 No 11, November 2015
-
Vol 4 No 10, October 2015
Cover Story Current Issue

Consuming small amounts of palatable food, i.e., snacking, at various times of the day is a highly prevalent behavior in most modern societies. Chronic rest-phase food intake – especially of high-caloric items – promotes obesity and disrupts endogenous circadian rhythms. Notably, humans and mice are more prone to hedonically driven eating behavior, the overconsumption of palatable food, during the late active/early inactive phase, i.e., the morning in mice, the evening in humans. While the effects of calorie-dense food items in promoting body weight gain are well documented, the metabolic impact of snack timing is far less understood.
Kimberly Begemann, Isabel Heyde, Pia Witt, Julica Inderhees, ... Henrik Oster
Current Issue
Inhibition of RIPK1 kinase does not affect diabetes development: β-Cells survive RIPK1 activation
Objectives
Type 1 diabetes (T1D) is caused by progressive immune-mediated loss of insulin-producing β-cells. Inflammation is detrimental to β-cell function and survival, moreover, both apoptosis and necrosis have been implicated as mechanisms of β-cell loss in T1D. The receptor interacting serine/threonine protein kinase 1 (RIPK1) promotes inflammation by serving as a scaffold for NF-κB and MAPK activation, or by acting as a kinase that triggers apoptosis or necroptosis. It is unclear whether RIPK1 kinase activity is involved in T1D pathology. In the present study, we investigated if absence of RIPK1 activation would affect the susceptibility to immune-mediated diabetes or diet induced obesity (DIO).
Methods
The RIPK1 knockin mouse line carrying a mutation mimicking serine 25 phosphorylation (Ripk1S25D/S25D), which abrogates RIPK1 kinase activity, was utilized to assess the in vivo role of RIPK1 in immune-mediated diabetes or diet induced obesity (DIO). In vitro, β-cell death and RIPK1 kinase activity was analysed in conditions known to induce RIPK1-dependent apoptosis/necroptosis.
Results
We demonstrate that Ripk1S25D/S25D mice presented normal glucose metabolism and β-cell function. Furthermore, immune-mediated diabetes and DIO were not different between Ripk1S25D/S25D and Ripk1+/+ mice. Despite strong activation of RIPK1 kinase and other necroptosis effectors (RIPK3 and MLKL) by TNF+BV6+zVAD, no cell death was observed in mouse islets nor human β-cells.
Conclusion
Our results contrast recent literature showing that most cell types undergo necroptosis following RIPK1 kinase activation. This peculiarity may reflect an adaptation to the inability of β-cells to proliferate and self-renewal.
Inhibition of RIPK1 kinase does not affect diabetes development: β-Cells survive RIPK1 activation
Objectives
Type 1 diabetes (T1D) is caused by progressive immune-mediated loss of insulin-producing β-cells. Inflammation is detrimental to β-cell function and survival, moreover, both apoptosis and necrosis have been implicated as mechanisms of β-cell loss in T1D. The receptor interacting serine/threonine protein kinase 1 (RIPK1) promotes inflammation by serving as a scaffold for NF-κB and MAPK activation, or by acting as a kinase that triggers apoptosis or necroptosis. It is unclear whether RIPK1 kinase activity is involved in T1D pathology. In the present study, we investigated if absence of RIPK1 activation would affect the susceptibility to immune-mediated diabetes or diet induced obesity (DIO).
Methods
The RIPK1 knockin mouse line carrying a mutation mimicking serine 25 phosphorylation (Ripk1S25D/S25D), which abrogates RIPK1 kinase activity, was utilized to assess the in vivo role of RIPK1 in immune-mediated diabetes or diet induced obesity (DIO). In vitro, β-cell death and RIPK1 kinase activity was analysed in conditions known to induce RIPK1-dependent apoptosis/necroptosis.
Results
We demonstrate that Ripk1S25D/S25D mice presented normal glucose metabolism and β-cell function. Furthermore, immune-mediated diabetes and DIO were not different between Ripk1S25D/S25D and Ripk1+/+ mice. Despite strong activation of RIPK1 kinase and other necroptosis effectors (RIPK3 and MLKL) by TNF+BV6+zVAD, no cell death was observed in mouse islets nor human β-cells.
Conclusion
Our results contrast recent literature showing that most cell types undergo necroptosis following RIPK1 kinase activation. This peculiarity may reflect an adaptation to the inability of β-cells to proliferate and self-renewal.
2021 impact factor: 8.568
Here is a video of Vimeo. When the iframes is activated, a connection to Vimeo is established and, if necessary, cookies from Vimeo are also used. For further information on cookies policy click here.