-
Volume 69, March 2023 - current issue
-
Vol 27, September 2019
-
Vol 26, August 2019
-
Vol 25, July 2019
-
Vol 24, June 2019
-
Vol 23, May 2019
-
Vol 22, April 2019
-
Vol 21, March 2019
-
Vol 20, February 2019
-
Vol 19, January 2019
-
Vol 18, December 2018
-
Vol 17, November 2018
-
Vol 16, October 2018
-
Vol 15, September 2018
-
Vol 14, August 2018
-
Vol 13, July 2018
-
Vol 12, June 2018
-
Vol 11, May 2018
-
Vol 10, April 2018
-
Vol 9, March 2018
-
Vol 8, February 2018
-
Vol 7, January 2018
-
Vol 6 No 12, December 2017
-
Vol 6 No 11, November 2017
-
Vol 6 No 10, October 2017
-
Vol 6 No 9, September 2017
-
Vol 6 No 8, August 2017
-
Vol 6 No 7, July 2017
-
Vol 6 No 6, June 2017
-
Vol 6 No 5, May 2017
-
Vol 6 No 4, April 2017
-
Vol 6 No 3, March 2017
-
Vol 6 No 2, February 2017
-
Vol 6 No 1, January 2017
-
Vol 5 No 12, December 2016
-
Vol 5 No 11, November 2016
-
Vol 5 No 10, October 2016
-
Vol 5 No 9, September 2016
-
Vol 5 No 8, August 2016
-
Vol 5 No 7, July 2016
-
Vol 5 No 6, June 2016
-
Vol 5 No 5, May 2016
-
Vol 5 No 4, April 2016
-
Vol 5 No 3, March 2016
-
Vol 5 No 2, February 2016
-
Vol 5 No 1, January 2016
-
Vol 4 No 12, December 2015
-
Vol 4 No 11, November 2015
-
Vol 4 No 10, October 2015
Cover Story Current Issue

Consuming small amounts of palatable food, i.e., snacking, at various times of the day is a highly prevalent behavior in most modern societies. Chronic rest-phase food intake – especially of high-caloric items – promotes obesity and disrupts endogenous circadian rhythms. Notably, humans and mice are more prone to hedonically driven eating behavior, the overconsumption of palatable food, during the late active/early inactive phase, i.e., the morning in mice, the evening in humans. While the effects of calorie-dense food items in promoting body weight gain are well documented, the metabolic impact of snack timing is far less understood.
Kimberly Begemann, Isabel Heyde, Pia Witt, Julica Inderhees, ... Henrik Oster
Current Issue
GPS2-mediated regulation of the adipocyte secretome modulates adipose tissue remodeling at the onset of diet-induced obesity
Objective
Dysfunctional, unhealthy expansion of white adipose tissue due to excess dietary intake is a process at the root of obesity and Type 2 Diabetes development. The objective of this study is to contribute to a better understanding of the underlying mechanism(s) regulating the early stages of adipose tissue expansion and adaptation to dietary stress due to an acute, high-fat diet (HFD) challenge, with a focus on the communication between adipocytes and other stromal cells.
Methods
We profiled the early response to high-fat diet exposure in wildtype and adipocyte-specific GPS2-KO (GPS2-AKO) mice at the cellular, tissue and organismal level. A multi-pronged approach was employed to disentangle the complex cellular interactions dictating tissue remodeling, via single-cell RNA sequencing and FACS profiling of the stromal fraction, and semi-quantitative proteomics of the adipocyte-derived exosomal cargo after 5 weeks of HFD feeding.
Results
Our results indicate that loss of GPS2 in mature adipocytes leads to impaired adaptation to the metabolic stress imposed by HFD feeding. GPS2-AKO mice are significantly more inflamed, insulin resistant, and obese, compared to the WT counterparts. At the cellular level, lack of GPS2 in adipocytes impacts upon other stromal populations, with both the eWAT and scWAT depots exhibiting changes in the immune and non-immune compartments that contribute to an increase in inflammatory and anti-adipogenic cell types. Our studies also revealed that adipocyte to stromal cell communication is facilitated by exosomes, and that transcriptional rewiring of the exosomal cargo is crucial for tissue remodeling. Loss of GPS2 results in increased expression of secreted factors promoting a TGFβ-driven fibrotic microenvironment favoring unhealthy tissue remodeling and expansion.
Conclusions
Adipocytes serve as an intercellular signaling hub, communicating with the stromal compartment via paracrine signaling. Our study highlights the importance of proper regulation of the ‘secretome’ released by energetically stressed adipocytes at the onset of obesity. Altered transcriptional regulation of factors secreted via adipocyte-derived exosomes (AdExos), in the absence of GPS2, contributes to the establishment of an anti-adipogenic, pro-fibrotic adipose tissue environment, and to hastened progression towards a metabolically dysfunctional phenotype.
GPS2-mediated regulation of the adipocyte secretome modulates adipose tissue remodeling at the onset of diet-induced obesity
Objective
Dysfunctional, unhealthy expansion of white adipose tissue due to excess dietary intake is a process at the root of obesity and Type 2 Diabetes development. The objective of this study is to contribute to a better understanding of the underlying mechanism(s) regulating the early stages of adipose tissue expansion and adaptation to dietary stress due to an acute, high-fat diet (HFD) challenge, with a focus on the communication between adipocytes and other stromal cells.
Methods
We profiled the early response to high-fat diet exposure in wildtype and adipocyte-specific GPS2-KO (GPS2-AKO) mice at the cellular, tissue and organismal level. A multi-pronged approach was employed to disentangle the complex cellular interactions dictating tissue remodeling, via single-cell RNA sequencing and FACS profiling of the stromal fraction, and semi-quantitative proteomics of the adipocyte-derived exosomal cargo after 5 weeks of HFD feeding.
Results
Our results indicate that loss of GPS2 in mature adipocytes leads to impaired adaptation to the metabolic stress imposed by HFD feeding. GPS2-AKO mice are significantly more inflamed, insulin resistant, and obese, compared to the WT counterparts. At the cellular level, lack of GPS2 in adipocytes impacts upon other stromal populations, with both the eWAT and scWAT depots exhibiting changes in the immune and non-immune compartments that contribute to an increase in inflammatory and anti-adipogenic cell types. Our studies also revealed that adipocyte to stromal cell communication is facilitated by exosomes, and that transcriptional rewiring of the exosomal cargo is crucial for tissue remodeling. Loss of GPS2 results in increased expression of secreted factors promoting a TGFβ-driven fibrotic microenvironment favoring unhealthy tissue remodeling and expansion.
Conclusions
Adipocytes serve as an intercellular signaling hub, communicating with the stromal compartment via paracrine signaling. Our study highlights the importance of proper regulation of the ‘secretome’ released by energetically stressed adipocytes at the onset of obesity. Altered transcriptional regulation of factors secreted via adipocyte-derived exosomes (AdExos), in the absence of GPS2, contributes to the establishment of an anti-adipogenic, pro-fibrotic adipose tissue environment, and to hastened progression towards a metabolically dysfunctional phenotype.
2021 impact factor: 8.568
Here is a video of Vimeo. When the iframes is activated, a connection to Vimeo is established and, if necessary, cookies from Vimeo are also used. For further information on cookies policy click here.