Cover Story Current Issue

Chronic intake of high-energy diets alters the physiological response to food and favors overconsumption. Feeding, especially of palatable food, leads to dopamine (DA) release in the Nucleus Accumbens (NAc, in the ventral striatum), prefrontal cortex (PFC) and dorsal striatum. The mesocortical (ventral tegmental area (VTA) projecting to NAc) DA system has been implicated in motivational drive and food seeking while the nigrostriatal DA (projections from the substantia nigra (SN) to the dorsal striatum) pathway plays a role in both food anticipatory behavior and reinforcement. In humans, hypersensitivity to food-associated reward may predispose to weight gain, however as obesity progresses deficit in reward signaling emerges. Individuals with obesity have reduced DRD2 availability in prefrontal brain regions compared to lean counterparts. 

Jiyoung S. Kim, Kevin C. Williams, Rebecca A. Kirkland, Ruth Schade, ... Claire B. de La Serre

Full text

 

Current Issue

Osmoadaptive GLP-1R signalling in hypothalamic neurones inhibits antidiuretic hormone synthesis and release

Michael P. Greenwood, Mingkwan Greenwood, Soledad Bárez-López, Joe W. Hawkins, ... David Murphy

Objectives

The excessive release of the antidiuretic hormone vasopressin is implicated in many diseases including cardiovascular disease, diabetes, obesity, and metabolic syndrome. Once thought to be elevated as a consequence of diseases, data now supports a more causative role. We have previously identified CREB3L1 as a transcription factor that co-ordinates vasopressin synthesis and release in the hypothalamus. The objective here was to identify mechanisms orchestrated by CREB3L1 that co-ordinate vasopressin release.

Methods

We mined Creb3l1 knockdown SON RNA-seq data to identify downstream target genes. We proceeded to investigate the expression of these genes and associated pathways in the supraoptic nucleus of the hypothalamus in response to physiological and pharmacological stimulation. We used viruses to selectively knockdown gene expression in the supraoptic nucleus and assessed physiological and metabolic parameters. We adopted a phosphoproteomics strategy to investigate mechanisms that facilitate hormone release by the pituitary gland.

Results

We discovered glucagon like peptide 1 receptor (Glp1r) as a downstream target gene and found increased expression in stimulated vasopressin neurones. Selective knockdown of supraoptic nucleus Glp1rs resulted in decreased food intake and body weight. Treatment with GLP-1R agonist liraglutide decreased vasopressin synthesis and release. Quantitative phosphoproteomics of the pituitary neurointermediate lobe revealed that liraglutide initiates hyperphosphorylation of presynapse active zone proteins that control vasopressin exocytosis.

Conclusion

In summary, we show that GLP-1R signalling inhibits the vasopressin system. Our data advises that hydration status may influence the pharmacodynamics of GLP-1R agonists so should be considered in current therapeutic strategies.

 

Osmoadaptive GLP-1R signalling in hypothalamic neurones inhibits antidiuretic hormone synthesis and release

Michael P. Greenwood, Mingkwan Greenwood, Soledad Bárez-López, Joe W. Hawkins, ... David Murphy

Objectives

The excessive release of the antidiuretic hormone vasopressin is implicated in many diseases including cardiovascular disease, diabetes, obesity, and metabolic syndrome. Once thought to be elevated as a consequence of diseases, data now supports a more causative role. We have previously identified CREB3L1 as a transcription factor that co-ordinates vasopressin synthesis and release in the hypothalamus. The objective here was to identify mechanisms orchestrated by CREB3L1 that co-ordinate vasopressin release.

Methods

We mined Creb3l1 knockdown SON RNA-seq data to identify downstream target genes. We proceeded to investigate the expression of these genes and associated pathways in the supraoptic nucleus of the hypothalamus in response to physiological and pharmacological stimulation. We used viruses to selectively knockdown gene expression in the supraoptic nucleus and assessed physiological and metabolic parameters. We adopted a phosphoproteomics strategy to investigate mechanisms that facilitate hormone release by the pituitary gland.

Results

We discovered glucagon like peptide 1 receptor (Glp1r) as a downstream target gene and found increased expression in stimulated vasopressin neurones. Selective knockdown of supraoptic nucleus Glp1rs resulted in decreased food intake and body weight. Treatment with GLP-1R agonist liraglutide decreased vasopressin synthesis and release. Quantitative phosphoproteomics of the pituitary neurointermediate lobe revealed that liraglutide initiates hyperphosphorylation of presynapse active zone proteins that control vasopressin exocytosis.

Conclusion

In summary, we show that GLP-1R signalling inhibits the vasopressin system. Our data advises that hydration status may influence the pharmacodynamics of GLP-1R agonists so should be considered in current therapeutic strategies.

 

2021 impact factor: 8.568

Here is a video of Vimeo. When the iframes is activated, a connection to Vimeo is established and, if necessary, cookies from Vimeo are also used. For further information on cookies policy click here.

Auf Werbeinhalte, die vor, während oder nach Videos von WEBSITE-URL eingeblendet werden, hat WEBSITE-URL keinen Einfluss. Wir übernehmen keine Gewähr für diese Inhalte. Weitere Informationen finden Sie hier.