Cover Story Current Issue

Chronic intake of high-energy diets alters the physiological response to food and favors overconsumption. Feeding, especially of palatable food, leads to dopamine (DA) release in the Nucleus Accumbens (NAc, in the ventral striatum), prefrontal cortex (PFC) and dorsal striatum. The mesocortical (ventral tegmental area (VTA) projecting to NAc) DA system has been implicated in motivational drive and food seeking while the nigrostriatal DA (projections from the substantia nigra (SN) to the dorsal striatum) pathway plays a role in both food anticipatory behavior and reinforcement. In humans, hypersensitivity to food-associated reward may predispose to weight gain, however as obesity progresses deficit in reward signaling emerges. Individuals with obesity have reduced DRD2 availability in prefrontal brain regions compared to lean counterparts. 

Jiyoung S. Kim, Kevin C. Williams, Rebecca A. Kirkland, Ruth Schade, ... Claire B. de La Serre

Full text

 

Current Issue

Effects of Metformin on the Gut Microbiota: A Systematic Review

Pavlo Petakh, Iryna Kamyshna, Aleksandr Kamyshnyi

Background

The gut microbiota is increasingly recognized as a crucial factor in human health and disease. Metformin, a commonly prescribed medication for type 2 diabetes, has been studied for its potential impact on the gut microbiota in preclinical models. However, the effects of metformin on the gut microbiota in humans remain uncertain.

Scope of Review

We conducted a systematic review of clinical trials and observational studies to assess the existing knowledge on the impact of metformin on the gut microbiota in humans. The review focused on changes in bacterial composition and diversity following metformin treatment.

Major Conclusions

Thirteen studies were included in the analysis. The results revealed alterations in the abundance of bacterial genera from various phyla, suggesting that metformin may selectively influence certain groups of bacteria in the gut microbiota. However, the effects on gut microbiota diversity were inconsistent across populations, with conflicting findings on changes in alpha and beta diversity measures.

Overall, the use of metformin was associated with changes in the abundance of specific bacterial genera within the gut microbiota of human populations. However, the effects on gut microbiota diversity were not consistent, highlighting the need for further research to understand the underlying mechanisms and clinical significance of these changes.

Keywords

metformin

gut microbiota

diabetes

dysbiosis

microbial diversity

Effects of Metformin on the Gut Microbiota: A Systematic Review

Pavlo Petakh, Iryna Kamyshna, Aleksandr Kamyshnyi

Background

The gut microbiota is increasingly recognized as a crucial factor in human health and disease. Metformin, a commonly prescribed medication for type 2 diabetes, has been studied for its potential impact on the gut microbiota in preclinical models. However, the effects of metformin on the gut microbiota in humans remain uncertain.

Scope of Review

We conducted a systematic review of clinical trials and observational studies to assess the existing knowledge on the impact of metformin on the gut microbiota in humans. The review focused on changes in bacterial composition and diversity following metformin treatment.

Major Conclusions

Thirteen studies were included in the analysis. The results revealed alterations in the abundance of bacterial genera from various phyla, suggesting that metformin may selectively influence certain groups of bacteria in the gut microbiota. However, the effects on gut microbiota diversity were inconsistent across populations, with conflicting findings on changes in alpha and beta diversity measures.

Overall, the use of metformin was associated with changes in the abundance of specific bacterial genera within the gut microbiota of human populations. However, the effects on gut microbiota diversity were not consistent, highlighting the need for further research to understand the underlying mechanisms and clinical significance of these changes.

Keywords

metformin

gut microbiota

diabetes

dysbiosis

microbial diversity

2021 impact factor: 8.568

Here is a video of Vimeo. When the iframes is activated, a connection to Vimeo is established and, if necessary, cookies from Vimeo are also used. For further information on cookies policy click here.

Auf Werbeinhalte, die vor, während oder nach Videos von WEBSITE-URL eingeblendet werden, hat WEBSITE-URL keinen Einfluss. Wir übernehmen keine Gewähr für diese Inhalte. Weitere Informationen finden Sie hier.