-
Vol 27, September 2019
-
Vol 26, August 2019
-
Vol 25, July 2019
-
Vol 24, June 2019
-
Vol 23, May 2019
-
Vol 22, April 2019
-
Vol 21, March 2019
-
Vol 20, February 2019
-
Vol 19, January 2019
-
Vol 18, December 2018
-
Vol 17, November 2018
-
Vol 16, October 2018
-
Vol 15, September 2018
-
Vol 14, August 2018
-
Vol 13, July 2018
-
Vol 12, June 2018
-
Vol 11, May 2018
-
Vol 10, April 2018
-
Vol 9, March 2018
-
Vol 8, February 2018
-
Vol 7, January 2018
-
Vol 6 No 12, December 2017
-
Vol 6 No 11, November 2017
-
Vol 6 No 10, October 2017
-
Vol 6 No 9, September 2017
-
Vol 6 No 8, August 2017
-
Vol 6 No 7, July 2017
-
Vol 6 No 6, June 2017
-
Vol 6 No 5, May 2017
-
Vol 6 No 4, April 2017
-
Vol 6 No 3, March 2017
-
Vol 6 No 2, February 2017
-
Vol 6 No 1, January 2017
-
Vol 5 No 12, December 2016
-
Vol 5 No 11, November 2016
-
Vol 5 No 10, October 2016
-
Vol 5 No 9, September 2016
-
Vol 5 No 8, August 2016
-
Vol 5 No 7, July 2016
-
Vol 5 No 6, June 2016
-
Vol 5 No 5, May 2016
-
Vol 5 No 4, April 2016
-
Vol 5 No 3, March 2016
-
Vol 5 No 2, February 2016
-
Vol 5 No 1, January 2016
-
Vol 4 No 12, December 2015
-
Vol 4 No 11, November 2015
-
Vol 4 No 10, October 2015
-
Volume 75, September 2023
Cover Story Current Issue

Chronic intake of high-energy diets alters the physiological response to food and favors overconsumption. Feeding, especially of palatable food, leads to dopamine (DA) release in the Nucleus Accumbens (NAc, in the ventral striatum), prefrontal cortex (PFC) and dorsal striatum. The mesocortical (ventral tegmental area (VTA) projecting to NAc) DA system has been implicated in motivational drive and food seeking while the nigrostriatal DA (projections from the substantia nigra (SN) to the dorsal striatum) pathway plays a role in both food anticipatory behavior and reinforcement. In humans, hypersensitivity to food-associated reward may predispose to weight gain, however as obesity progresses deficit in reward signaling emerges. Individuals with obesity have reduced DRD2 availability in prefrontal brain regions compared to lean counterparts.
Jiyoung S. Kim, Kevin C. Williams, Rebecca A. Kirkland, Ruth Schade, ... Claire B. de La Serre
Current Issue
Effects of Metformin on the Gut Microbiota: A Systematic Review
Background
The gut microbiota is increasingly recognized as a crucial factor in human health and disease. Metformin, a commonly prescribed medication for type 2 diabetes, has been studied for its potential impact on the gut microbiota in preclinical models. However, the effects of metformin on the gut microbiota in humans remain uncertain.
Scope of Review
We conducted a systematic review of clinical trials and observational studies to assess the existing knowledge on the impact of metformin on the gut microbiota in humans. The review focused on changes in bacterial composition and diversity following metformin treatment.
Major Conclusions
Thirteen studies were included in the analysis. The results revealed alterations in the abundance of bacterial genera from various phyla, suggesting that metformin may selectively influence certain groups of bacteria in the gut microbiota. However, the effects on gut microbiota diversity were inconsistent across populations, with conflicting findings on changes in alpha and beta diversity measures.
Overall, the use of metformin was associated with changes in the abundance of specific bacterial genera within the gut microbiota of human populations. However, the effects on gut microbiota diversity were not consistent, highlighting the need for further research to understand the underlying mechanisms and clinical significance of these changes.
Keywords
metformin
gut microbiota
diabetes
dysbiosis
microbial diversity
Effects of Metformin on the Gut Microbiota: A Systematic Review
Background
The gut microbiota is increasingly recognized as a crucial factor in human health and disease. Metformin, a commonly prescribed medication for type 2 diabetes, has been studied for its potential impact on the gut microbiota in preclinical models. However, the effects of metformin on the gut microbiota in humans remain uncertain.
Scope of Review
We conducted a systematic review of clinical trials and observational studies to assess the existing knowledge on the impact of metformin on the gut microbiota in humans. The review focused on changes in bacterial composition and diversity following metformin treatment.
Major Conclusions
Thirteen studies were included in the analysis. The results revealed alterations in the abundance of bacterial genera from various phyla, suggesting that metformin may selectively influence certain groups of bacteria in the gut microbiota. However, the effects on gut microbiota diversity were inconsistent across populations, with conflicting findings on changes in alpha and beta diversity measures.
Overall, the use of metformin was associated with changes in the abundance of specific bacterial genera within the gut microbiota of human populations. However, the effects on gut microbiota diversity were not consistent, highlighting the need for further research to understand the underlying mechanisms and clinical significance of these changes.
Keywords
metformin
gut microbiota
diabetes
dysbiosis
microbial diversity
2021 impact factor: 8.568
Here is a video of Vimeo. When the iframes is activated, a connection to Vimeo is established and, if necessary, cookies from Vimeo are also used. For further information on cookies policy click here.