Cover Story Current Issue

Evolutionary forces have wired our brains to prefer and consume energy-dense foods to aid in our survival. While effective during periods of limited access, the ubiquitous nature of high-fat food sources in society leads to obesity and numerous related health complications. Exacerbating this drive to consume more energy-dense, palatable foods is a devaluation of less appetitive, nutritionally-balanced foods. While this preference for calorically-rich foods is well known, significant gaps exist in our understanding of how this develops and leads to devaluation.

Laboratory mice are typically provided with ad libitum access to a well-balanced standard chow diet (SD) in which the macronutrient composition has been formulated for optimal growth. Introduction to ad libitum high fat diet (HFD), but not a high-sucrose diet, leads to rapid weight gain, at least in part due to excessive caloric intake. Interestingly, when mice are given a choice between ad libitum access to both SD and HFD, they strongly prefer consumption of the latter at the expense of the former. While this predilection for HFD over SD during prolonged exposure is well described, how rapidly this transition occurs under physiological or artificial hunger is less known. Removal of HFD from mice given the choice between HFD and SD, akin to a strict human diet, results in rapid weight loss due to the self-restricted consumption of SD. Additionally, mice fed a HFD will forgo SD consumption even in states of physiological or artificially-induced caloric deprivation. While this SD devaluation is robustly conserved between sex and subject and independent of fat mass accrual, the causative nature of this phenomenon is not well understood.

Full text

 

Current Issue

A novel lncRNA GM47544 modulates triglyceride metabolism by inducing ubiquitination-dependent protein degradation of APOC3

Qianqian Xiao, Luyun Wang, Jing Wang, Man Wang, ... Hu Ding

A novel lncRNA GM47544 modulates triglyceride metabolism by inducing ubiquitination-dependent protein degradation of APOC3

 

Objective

Emerging evidence highlights the pivotal roles of long non-coding RNAs (lncRNAs) in lipid metabolism. Apoprotein C3 (ApoC3) is a well-established therapeutic target for hypertriglyceridemia and exhibits a strong association with cardiovascular disease. However, the exact mechanisms via which the lncRNAs control ApoC3 expression remain unclear.

Methods

We identified a novel long noncoding RNA (lncRNA), GM47544, within the ApoA1/C3/A4/A5 gene cluster. Subsequently, the effect of GM47544 on intracellular triglyceride metabolism was analyzed. The diet-induced mouse models of hyperlipidemia and atherosclerosis were established to explore the effect of GM47544 on dyslipidemia and plaque formation in vivo. The molecular mechanism was explored through RNA sequencing, immunoprecipitation, RNA pull-down assay, and RNA immunoprecipitation.

Results

GM47544 was overexpressed under high-fat stimulation. GM47544 effectively improved hepatic steatosis, reduced blood lipid levels, and alleviated atherosclerosis in vitro and in vivo. Mechanistically, GM47544 directly bound to ApoC3 and facilitated the ubiquitination at lysine 79 in ApoC3, thereby facilitating ApoC3 degradation via the ubiquitin-proteasome pathway. Moreover, we identified AP006216.5 as the human GM47544 transcript, which fulfills a comparable function in human hepatocytes.

Conclusions

The identification of GM47544 as a lncRNA modulator of ApoC3 reveals a novel mechanism of post-translational modification, with significant clinical implications for the treatment of hypertriglyceridemia and atherosclerosis.

 

Articles in Press

A novel lncRNA GM47544 modulates triglyceride metabolism by inducing ubiquitination-dependent protein degradation of APOC3

Qianqian Xiao, Luyun Wang, Jing Wang, Man Wang, ... Hu Ding

A novel lncRNA GM47544 modulates triglyceride metabolism by inducing ubiquitination-dependent protein degradation of APOC3

 

Objective

Emerging evidence highlights the pivotal roles of long non-coding RNAs (lncRNAs) in lipid metabolism. Apoprotein C3 (ApoC3) is a well-established therapeutic target for hypertriglyceridemia and exhibits a strong association with cardiovascular disease. However, the exact mechanisms via which the lncRNAs control ApoC3 expression remain unclear.

Methods

We identified a novel long noncoding RNA (lncRNA), GM47544, within the ApoA1/C3/A4/A5 gene cluster. Subsequently, the effect of GM47544 on intracellular triglyceride metabolism was analyzed. The diet-induced mouse models of hyperlipidemia and atherosclerosis were established to explore the effect of GM47544 on dyslipidemia and plaque formation in vivo. The molecular mechanism was explored through RNA sequencing, immunoprecipitation, RNA pull-down assay, and RNA immunoprecipitation.

Results

GM47544 was overexpressed under high-fat stimulation. GM47544 effectively improved hepatic steatosis, reduced blood lipid levels, and alleviated atherosclerosis in vitro and in vivo. Mechanistically, GM47544 directly bound to ApoC3 and facilitated the ubiquitination at lysine 79 in ApoC3, thereby facilitating ApoC3 degradation via the ubiquitin-proteasome pathway. Moreover, we identified AP006216.5 as the human GM47544 transcript, which fulfills a comparable function in human hepatocytes.

Conclusions

The identification of GM47544 as a lncRNA modulator of ApoC3 reveals a novel mechanism of post-translational modification, with significant clinical implications for the treatment of hypertriglyceridemia and atherosclerosis.

 

You are what you eat

Here is a video of Vimeo. When the iframes is activated, a connection to Vimeo is established and, if necessary, cookies from Vimeo are also used. For further information on cookies policy click here.

Auf Werbeinhalte, die vor, während oder nach Videos von WEBSITE-URL eingeblendet werden, hat WEBSITE-URL keinen Einfluss. Wir übernehmen keine Gewähr für diese Inhalte. Weitere Informationen finden Sie hier.