- Volume 95, Current Issue
- Vol 28, October 2019
- Vol 27, September 2019
- Vol 26, August 2019
- Vol 25, July 2019
- Vol 24, June 2019
- Vol 23, May 2019
- Vol 22, April 2019
- Vol 21, March 2019
- Vol 20, February 2019
- Vol 19, January 2019
- Vol 18, December 2018
- Vol 17, November 2018
- Vol 16, October 2018
- Vol 15, September 2018
- Vol 14, August 2018
- Vol 13, July 2018
- Vol 12, June 2018
- Vol 11, May 2018
- Vol 10, April 2018
- Vol 9, March 2018
- Vol 8, February 2018
- Vol 7, January 2018
- Vol 6 No 12, December 2017
- Vol 6 No 11, November 2017
- Vol 6 No 10, October 2017
- Vol 6 No 9, September 2017
- Vol 6 No 8, August 2017
- Vol 6 No 7, July 2017
- Vol 6 No 6, June 2017
- Vol 6 No 5, May 2017
- Vol 6 No 4, April 2017
- Vol 6 No 3, March 2017
- Vol 6 No 2, February 2017
- Vol 6 No 1, January 2017
- Vol 5 No 12, December 2016
- Vol 5 No 11, November 2016
- Vol 5 No 10, October 2016
- Vol 5 No 9, September 2016
- Vol 5 No 8, August 2016
- Vol 5 No 7, July 2016
- Vol 5 No 6, June 2016
- Vol 5 No 5, May 2016
- Vol 5 No 4, April 2016
- Vol 5 No 3, March 2016
- Vol 5 No 2, February 2016
- Vol 5 No 1, January 2016
- Vol 4 No 12, December 2015
- Vol 4 No 11, November 2015
- Vol 4 No 10, October 2015
Cover Story Current Issue

At the turn of the 19th century, Ivan Pavlov and others established that the secretion of pancreatic juice is induced upon entry of acidic chyme into the duodenum, and that this pancreatic secretion is accelerated by infusion of hydrochloric acid (HCL) into the stomach. Pavlov hypothesized that secretion of pancreatic juice is induced via a neuronal reflex; however, pancreatic secretion prevailed in dogs following denervation of the intestinal vagal and splanchnic nerves, indicating that pancreatic secretion must be mediated by another, as yet unknown, mechanism.
Current Issue
Glucose-1,6-bisphosphate: A new gatekeeper of cerebral mitochondrial pyruvate uptake
- Abstract
Glucose-1,6-bisphosphate: A new gatekeeper of cerebral mitochondrial pyruvate uptake
Objective
Glucose-1,6-bisphosphate (G-1,6-BP), a byproduct of glycolysis that is synthesized by phosphoglucomutase 2 like 1 (PGM2L1), is particularly abundant in neurons. G-1,6-BP is sensitive to the glycolytic flux, due to its dependence on 1,3-bisphosphoglycerate as phosphate donor, and the energy state, due to its degradation by inosine monophosphate-activated phosphomannomutase 1. Since the exact role of this metabolite remains unclear, our aim was to elucidate the specific function of G-1,6-BP in the brain.
Methods
The effect of PGM2L1 on neuronal post-ischemic viability was assessed by siRNA-mediated knockdown of PGM2L1 in primary mouse neurons. Acute mouse brain slices were used to correlate the reduction in G-1,6-BP upon ischemia to changes in carbon metabolism by 13C6-glucose tracing. A drug affinity responsive target stability assay was used to test if G-1,6-BP interacts with the mitochondrial pyruvate carrier (MPC) subunits in mouse brain protein extracts. Human embryonic kidney cells expressing a MPC bioluminescence resonance energy transfer sensor were used to analyze how PGM2L1 overexpression affects MPC activity. The effect of G-1,6-BP on mitochondrial pyruvate uptake and oxygen consumption rates was analyzed in isolated mouse brain mitochondria. PGM2L1 and a predicted upstream kinase were overexpressed in a human neuroblastoma cell line and G-1,6-BP levels were measured.
Results
We found that G-1,6-BP in mouse brain slices was quickly degraded upon ischemia and reperfusion. Knockdown of PGM2L1 in mouse neurons reduced post-ischemic viability, indicating that PGM2L1 plays a neuroprotective role. The reduction in G-1,6-BP upon ischemia was not accompanied by alterations in glycolytic rates but we did see a reduced 13C6-glucose incorporation into citrate, suggesting a potential role in mitochondrial pyruvate uptake or metabolism. Indeed, G-1,6-BP interacted with both MPC subunits and overexpression of PGM2L1 increased MPC activity. G-1,6-BP, at concentrations found in the brain, enhanced mitochondrial pyruvate uptake and pyruvate-induced oxygen consumption rates. Overexpression of a predicted upstream kinase inhibited PGM2L1 activity, showing that besides metabolism, also signaling pathways can regulate G-1,6-BP levels.
Conclusions
We provide evidence that G-1,6-BP positively regulates mitochondrial pyruvate uptake and post-ischemic neuronal viability. These compelling data reveal a novel mechanism by which neurons can couple glycolysis-derived pyruvate to the tricarboxylic acid cycle. This process is sensitive to the glycolytic flux, the cell's energetic state, and upstream signaling cascades, offering many regulatory means to fine-tune this critical metabolic step.
Articles in Press
Glucose-1,6-bisphosphate: A new gatekeeper of cerebral mitochondrial pyruvate uptake
- Abstract
Glucose-1,6-bisphosphate: A new gatekeeper of cerebral mitochondrial pyruvate uptake
Objective
Glucose-1,6-bisphosphate (G-1,6-BP), a byproduct of glycolysis that is synthesized by phosphoglucomutase 2 like 1 (PGM2L1), is particularly abundant in neurons. G-1,6-BP is sensitive to the glycolytic flux, due to its dependence on 1,3-bisphosphoglycerate as phosphate donor, and the energy state, due to its degradation by inosine monophosphate-activated phosphomannomutase 1. Since the exact role of this metabolite remains unclear, our aim was to elucidate the specific function of G-1,6-BP in the brain.
Methods
The effect of PGM2L1 on neuronal post-ischemic viability was assessed by siRNA-mediated knockdown of PGM2L1 in primary mouse neurons. Acute mouse brain slices were used to correlate the reduction in G-1,6-BP upon ischemia to changes in carbon metabolism by 13C6-glucose tracing. A drug affinity responsive target stability assay was used to test if G-1,6-BP interacts with the mitochondrial pyruvate carrier (MPC) subunits in mouse brain protein extracts. Human embryonic kidney cells expressing a MPC bioluminescence resonance energy transfer sensor were used to analyze how PGM2L1 overexpression affects MPC activity. The effect of G-1,6-BP on mitochondrial pyruvate uptake and oxygen consumption rates was analyzed in isolated mouse brain mitochondria. PGM2L1 and a predicted upstream kinase were overexpressed in a human neuroblastoma cell line and G-1,6-BP levels were measured.
Results
We found that G-1,6-BP in mouse brain slices was quickly degraded upon ischemia and reperfusion. Knockdown of PGM2L1 in mouse neurons reduced post-ischemic viability, indicating that PGM2L1 plays a neuroprotective role. The reduction in G-1,6-BP upon ischemia was not accompanied by alterations in glycolytic rates but we did see a reduced 13C6-glucose incorporation into citrate, suggesting a potential role in mitochondrial pyruvate uptake or metabolism. Indeed, G-1,6-BP interacted with both MPC subunits and overexpression of PGM2L1 increased MPC activity. G-1,6-BP, at concentrations found in the brain, enhanced mitochondrial pyruvate uptake and pyruvate-induced oxygen consumption rates. Overexpression of a predicted upstream kinase inhibited PGM2L1 activity, showing that besides metabolism, also signaling pathways can regulate G-1,6-BP levels.
Conclusions
We provide evidence that G-1,6-BP positively regulates mitochondrial pyruvate uptake and post-ischemic neuronal viability. These compelling data reveal a novel mechanism by which neurons can couple glycolysis-derived pyruvate to the tricarboxylic acid cycle. This process is sensitive to the glycolytic flux, the cell's energetic state, and upstream signaling cascades, offering many regulatory means to fine-tune this critical metabolic step.
Save the Date

12th Helmholtz
Diabetes Conference
22-24. Sep, Munich
You are what you eat
Here is a video of Vimeo. When the iframes is activated, a connection to Vimeo is established and, if necessary, cookies from Vimeo are also used. For further information on cookies policy click here.