Cover Story Current Issue

In 1902, Ralph Larrabee provided intriguing evidence suggesting parallels between the changes in white blood cell counts observed in Boston Marathon runners and those seen in specific disease states. Notably he also noted a considerable leukocytosis of the inflammatory type, suggesting a potential link between extreme exercise and inflammatory responses. This early observation laid the groundwork for further investigations into the complex relationship between exercise intensity, immune system activation, and health outcomes, igniting an ongoing debate about the impact of exercise on the immune system.

Today we know exercise shows quantifiable and observable benefits to human health across multiple scales, but the specific genetic and biological processes and pathways underlying these benefits remain unclear. This is primarily caused by individuals exhibiting significant physiological variations in their response to exercise training, coupled with the diverse methods, subjects and timelines used in studying this phenomenon, which impacts the potential for clear and reproducible analysis. A deeper grasp of the metabolic and cellular impacts of exercise could lead to more targeted exercise approaches. Additionally, unraveling the molecular shifts induced by various exercise methods may hasten the identification of pharmaceutical targets for improving metabolic well-being. To combat the global pandemic of physical inactivity and its associated toll of 5.3 million deaths annually, we must gain a better understanding of the fundamental principles governing physical activity’s benefits.

Full text

 

Current Issue

Renal L-2-hydroxyglutarate dehydrogenase activity promotes hypoxia tolerance and mitochondrial metabolism in Drosophila melanogaster

Nader H. Mahmoudzadeh, Yasaman Heidarian, Jason P. Tourigny, Alexander J. Fitt, ... Jason M. Tennessen

Renal L-2-hydroxyglutarate dehydrogenase activity promotes hypoxia tolerance and mitochondrial metabolism in Drosophila melanogaster

 

Objectives

The mitochondrial enzyme L-2-hydroxyglutarate dehydrogenase (L2HGDH) regulates the abundance of L-2-hydroxyglutarate (L-2HG), a potent signaling metabolite capable of influencing chromatin architecture, mitochondrial metabolism, and cell fate decisions. Loss of L2hgdh activity in humans induces ectopic L-2HG accumulation, resulting in neurodevelopmental defects, altered immune cell function, and enhanced growth of clear cell renal cell carcinomas. To better understand the molecular mechanisms that underlie these disease pathologies, we used the fruit fly Drosophila melanogaster to investigate the endogenous functions of L2hgdh.

Methods

L2hgdh mutant adult male flies were analyzed under normoxic and hypoxic conditions using a combination of semi-targeted metabolomics and RNA-seq. These multi-omic analyses were complemented by tissue-specific genetic studies that examined the effects of L2hgdh mutations on the Drosophila renal system (Malpighian tubules; MTs).

Results

Our studies revealed that while L2hgdh is not essential for growth or viability under standard culture conditions, L2hgdh mutants are hypersensitive to hypoxia and expire during the reoxygenation phase with severe disruptions of mitochondrial metabolism. Moreover, we find that the fly renal system is a key site of L2hgdh activity, as L2hgdh mutants that express a rescuing transgene within the MTs survive hypoxia treatment and exhibit normal levels of mitochondrial metabolites. We also demonstrate that even under normoxic conditions, L2hgdh mutant MTs experience significant metabolic stress and are sensitized to aberrant growth upon Egfr activation.

Conclusions

These findings present a model in which renal L2hgdh activity limits systemic L-2HG accumulation, thus indirectly regulating the balance between glycolytic and mitochondrial metabolism, enabling successful recovery from hypoxia exposure, and ensuring renal tissue integrity.

 

 

    Articles in Press

    Renal L-2-hydroxyglutarate dehydrogenase activity promotes hypoxia tolerance and mitochondrial metabolism in Drosophila melanogaster

    Nader H. Mahmoudzadeh, Yasaman Heidarian, Jason P. Tourigny, Alexander J. Fitt, ... Jason M. Tennessen

    Renal L-2-hydroxyglutarate dehydrogenase activity promotes hypoxia tolerance and mitochondrial metabolism in Drosophila melanogaster

     

    Objectives

    The mitochondrial enzyme L-2-hydroxyglutarate dehydrogenase (L2HGDH) regulates the abundance of L-2-hydroxyglutarate (L-2HG), a potent signaling metabolite capable of influencing chromatin architecture, mitochondrial metabolism, and cell fate decisions. Loss of L2hgdh activity in humans induces ectopic L-2HG accumulation, resulting in neurodevelopmental defects, altered immune cell function, and enhanced growth of clear cell renal cell carcinomas. To better understand the molecular mechanisms that underlie these disease pathologies, we used the fruit fly Drosophila melanogaster to investigate the endogenous functions of L2hgdh.

    Methods

    L2hgdh mutant adult male flies were analyzed under normoxic and hypoxic conditions using a combination of semi-targeted metabolomics and RNA-seq. These multi-omic analyses were complemented by tissue-specific genetic studies that examined the effects of L2hgdh mutations on the Drosophila renal system (Malpighian tubules; MTs).

    Results

    Our studies revealed that while L2hgdh is not essential for growth or viability under standard culture conditions, L2hgdh mutants are hypersensitive to hypoxia and expire during the reoxygenation phase with severe disruptions of mitochondrial metabolism. Moreover, we find that the fly renal system is a key site of L2hgdh activity, as L2hgdh mutants that express a rescuing transgene within the MTs survive hypoxia treatment and exhibit normal levels of mitochondrial metabolites. We also demonstrate that even under normoxic conditions, L2hgdh mutant MTs experience significant metabolic stress and are sensitized to aberrant growth upon Egfr activation.

    Conclusions

    These findings present a model in which renal L2hgdh activity limits systemic L-2HG accumulation, thus indirectly regulating the balance between glycolytic and mitochondrial metabolism, enabling successful recovery from hypoxia exposure, and ensuring renal tissue integrity.

     

     

      You are what you eat

      Here is a video of Vimeo. When the iframes is activated, a connection to Vimeo is established and, if necessary, cookies from Vimeo are also used. For further information on cookies policy click here.

      Auf Werbeinhalte, die vor, während oder nach Videos von WEBSITE-URL eingeblendet werden, hat WEBSITE-URL keinen Einfluss. Wir übernehmen keine Gewähr für diese Inhalte. Weitere Informationen finden Sie hier.