Cover Story Current Issue

In 1902, Ralph Larrabee provided intriguing evidence suggesting parallels between the changes in white blood cell counts observed in Boston Marathon runners and those seen in specific disease states. Notably he also noted a considerable leukocytosis of the inflammatory type, suggesting a potential link between extreme exercise and inflammatory responses. This early observation laid the groundwork for further investigations into the complex relationship between exercise intensity, immune system activation, and health outcomes, igniting an ongoing debate about the impact of exercise on the immune system.

Today we know exercise shows quantifiable and observable benefits to human health across multiple scales, but the specific genetic and biological processes and pathways underlying these benefits remain unclear. This is primarily caused by individuals exhibiting significant physiological variations in their response to exercise training, coupled with the diverse methods, subjects and timelines used in studying this phenomenon, which impacts the potential for clear and reproducible analysis. A deeper grasp of the metabolic and cellular impacts of exercise could lead to more targeted exercise approaches. Additionally, unraveling the molecular shifts induced by various exercise methods may hasten the identification of pharmaceutical targets for improving metabolic well-being. To combat the global pandemic of physical inactivity and its associated toll of 5.3 million deaths annually, we must gain a better understanding of the fundamental principles governing physical activity’s benefits.

Full text

 

Current Issue

Knock-out of CD73 delays the onset of HR-negative breast cancer by reprogramming lipid metabolism and is associated with increased tumor mutational burden

Paweł Kamil Serafin, Marta Popęda, Kamila Bulak, Agata Zwara, ... Patrycja Koszałka

Knock-out of CD73 delays the onset of HR-negative breast cancer by reprogramming lipid metabolism and is associated with increased tumor mutational burden

 

Objective

CD73 (ecto-5′-nucleotidase, NT5E), a cell-surface enzyme converting 5′-AMP to adenosine, is crucial for cancer progression. However, its role in the tumorigenesis process remains mostly obscure. We aimed to demonstrate CD73's role in breast cancer (BC) tumorigenesis through metabolic rewiring of fatty acid metabolism, a process recently indicated to be regulated by BC major prognostic markers, hormone receptors (HR) for estrogen (ER), and progesterone (PR).

Methods

A murine model of chemically induced mammary gland tumorigenesis was applied to analyze CD73 knock-out (KO)-induced changes at the transcriptome (RNA-seq), proteome (IHC, WB), and lipidome (GC-EI-MS) levels. CD73 KO-induced changes were correlated with scRNA-seq and bulk RNA-seq data for human breast tissues and BCs from public collections and confirmed at the proteome level with IHC or WB analysis of BC tissue microarrays and cell lines.

Results

CD73 KO delayed the onset of HR/PR-negative mammary tumors in a murine model. This delay correlated with increased expression of genes related to biosynthesis and β-oxidation of fatty acids (FAs) in the CD73 KO group at the initiation stage. STRING analysis based on RNA-seq data indicated an interplay between CD73 KO, up-regulated expression of PR-coding gene, and DEGs involved in FA metabolism, with PPARγ, a main regulator of FA synthesis, as a main connective node. In epithelial cells of mammary glands, PPARγ expression correlated with CD73 at the RNA level. With cancer progression, CD73 KO increased the levels of PUFAn3/6 (polyunsaturated omega 3/6 FAs), known ligands of PPARγ and target for lipid peroxidation, which may lead to oxidative DNA damage. It correlated with the downregulation of genes involved in cellular stress response (Mlh1Gsta3), PR–or CD73-dependent changes in the intracellular ROS levels and expression or activation of proteins involved in DNA repair or oxidative stress response in mammary tumor or human BC cell lines, increased tumor mutational burden (TMB) and genomic instability markers in CD73 low HR-negative human BCs, and the prolonged onset of tumors in the CD73 KO HR/PR-negative group.

Conclusions

CD73 has a significant role in tumorigenesis driving the reprogramming of lipid metabolism through the regulatory loop with PR and PPARγ in epithelial cells of mammary glands. Low CD73 expression/CD73 KO might enhance mutational burden by disrupting this regulatory loop, delaying the onset of HR-negative tumors. Our results support combining therapy targeting the CD73-adenosine axis and tumor lipidome against HR-negative tumors, especially at their earliest developmental stage.

 

Articles in Press

Knock-out of CD73 delays the onset of HR-negative breast cancer by reprogramming lipid metabolism and is associated with increased tumor mutational burden

Paweł Kamil Serafin, Marta Popęda, Kamila Bulak, Agata Zwara, ... Patrycja Koszałka

Knock-out of CD73 delays the onset of HR-negative breast cancer by reprogramming lipid metabolism and is associated with increased tumor mutational burden

 

Objective

CD73 (ecto-5′-nucleotidase, NT5E), a cell-surface enzyme converting 5′-AMP to adenosine, is crucial for cancer progression. However, its role in the tumorigenesis process remains mostly obscure. We aimed to demonstrate CD73's role in breast cancer (BC) tumorigenesis through metabolic rewiring of fatty acid metabolism, a process recently indicated to be regulated by BC major prognostic markers, hormone receptors (HR) for estrogen (ER), and progesterone (PR).

Methods

A murine model of chemically induced mammary gland tumorigenesis was applied to analyze CD73 knock-out (KO)-induced changes at the transcriptome (RNA-seq), proteome (IHC, WB), and lipidome (GC-EI-MS) levels. CD73 KO-induced changes were correlated with scRNA-seq and bulk RNA-seq data for human breast tissues and BCs from public collections and confirmed at the proteome level with IHC or WB analysis of BC tissue microarrays and cell lines.

Results

CD73 KO delayed the onset of HR/PR-negative mammary tumors in a murine model. This delay correlated with increased expression of genes related to biosynthesis and β-oxidation of fatty acids (FAs) in the CD73 KO group at the initiation stage. STRING analysis based on RNA-seq data indicated an interplay between CD73 KO, up-regulated expression of PR-coding gene, and DEGs involved in FA metabolism, with PPARγ, a main regulator of FA synthesis, as a main connective node. In epithelial cells of mammary glands, PPARγ expression correlated with CD73 at the RNA level. With cancer progression, CD73 KO increased the levels of PUFAn3/6 (polyunsaturated omega 3/6 FAs), known ligands of PPARγ and target for lipid peroxidation, which may lead to oxidative DNA damage. It correlated with the downregulation of genes involved in cellular stress response (Mlh1Gsta3), PR–or CD73-dependent changes in the intracellular ROS levels and expression or activation of proteins involved in DNA repair or oxidative stress response in mammary tumor or human BC cell lines, increased tumor mutational burden (TMB) and genomic instability markers in CD73 low HR-negative human BCs, and the prolonged onset of tumors in the CD73 KO HR/PR-negative group.

Conclusions

CD73 has a significant role in tumorigenesis driving the reprogramming of lipid metabolism through the regulatory loop with PR and PPARγ in epithelial cells of mammary glands. Low CD73 expression/CD73 KO might enhance mutational burden by disrupting this regulatory loop, delaying the onset of HR-negative tumors. Our results support combining therapy targeting the CD73-adenosine axis and tumor lipidome against HR-negative tumors, especially at their earliest developmental stage.

 

You are what you eat

Here is a video of Vimeo. When the iframes is activated, a connection to Vimeo is established and, if necessary, cookies from Vimeo are also used. For further information on cookies policy click here.

Auf Werbeinhalte, die vor, während oder nach Videos von WEBSITE-URL eingeblendet werden, hat WEBSITE-URL keinen Einfluss. Wir übernehmen keine Gewähr für diese Inhalte. Weitere Informationen finden Sie hier.