Cover Story Current Issue

Excessive lipid accumulation in adipose tissue triggers hypertrophy and stress of adipocytes, leading to infiltration of proinflammatory immune cells, fibrosis and adipocyte cell death, collectively referred to as adipose tissue dysfunction. As consequence, adipocytes capacity to store lipids is impaired and fat is ectopically accumulated in organs such as muscle, liver and pancreas, a condition that promotes organ dysfunction and insulin resistance, contributing to the pathogenesis of type 2 diabetes (T2D).

Although fat accumulation in human pancreas was described decades ago, it has for long remained an underexplored facet of ectopic fat distribution. Pancreatic fat has been associated with improved insulin secretion in normoglycaemic subjects, but with impaired insulin secretion in patients at increased risk of T2D. Furthermore, T2D diabetes remission, i.e. recovery of beta cell function was accompanied by reduction of pancreatic fat. These clinical observations point to the controversial role of pancreatic fat in insulin secretion, and emphasize the need for experimental evidence demonstrating plausible lipolysis derived fatty acids-/secretome-mediated effects of pancreatic adipocytes in islets. To date, detailed studies on the mechanistic interactions between pancreatic adipocytes and insulin secretion remain sparse, as reliable in vitro models replicating the unique properties of these cells have been lacking.

Full text

 

Current Issue

Multi-omics after O-GlcNAc alteration identified cellular processes promoting aneuploidy after loss of O-GlcNAc transferase

Samuel S. Boyd, Dakota R. Robarts, Khue Nguyen, Maite Villar, ... Chad Slawson

Multi-omics after O-GlcNAc alteration identified cellular processes promoting aneuploidy after loss of O-GlcNAc transferase

 

Objective

Pharmacologic or genetic manipulation of O-GlcNAcylation, an intracellular, single sugar post-translational modification, are difficult to interpret due to the pleotropic nature of O-GlcNAc and the vast signaling pathways it regulates.

Method

To address the pleotropic nature of O-GlcNAc, we employed either OGT (O-GlcNAc transferase), OGA (O-GlcNAcase) liver knockouts, or pharmacological inhibition of OGA coupled with multi-Omics analysis and bioinformatics.

Results

We identified numerous genes, proteins, phospho-proteins, or metabolites that were either inversely or equivalently changed between conditions. Moreover, we identified pathways in OGT knockout samples associated with increased aneuploidy. To test and validate these pathways, we induced liver growth in OGT knockouts by partial hepatectomy. OGT knockout livers showed a robust aneuploidy phenotype with disruptions in mitosis, nutrient sensing, protein metabolism/amino acid metabolism, stress response, and HIPPO signaling demonstrating how OGT is essential in controlling aneuploidy pathways.

Conclusion

These data show how a multi-Omics platform can disentangle the pleotropic nature of O-GlcNAc to discern how OGT fine-tunes multiple cellular pathways involved in aneuploidy.

 

 

Articles in Press

Multi-omics after O-GlcNAc alteration identified cellular processes promoting aneuploidy after loss of O-GlcNAc transferase

Samuel S. Boyd, Dakota R. Robarts, Khue Nguyen, Maite Villar, ... Chad Slawson

Multi-omics after O-GlcNAc alteration identified cellular processes promoting aneuploidy after loss of O-GlcNAc transferase

 

Objective

Pharmacologic or genetic manipulation of O-GlcNAcylation, an intracellular, single sugar post-translational modification, are difficult to interpret due to the pleotropic nature of O-GlcNAc and the vast signaling pathways it regulates.

Method

To address the pleotropic nature of O-GlcNAc, we employed either OGT (O-GlcNAc transferase), OGA (O-GlcNAcase) liver knockouts, or pharmacological inhibition of OGA coupled with multi-Omics analysis and bioinformatics.

Results

We identified numerous genes, proteins, phospho-proteins, or metabolites that were either inversely or equivalently changed between conditions. Moreover, we identified pathways in OGT knockout samples associated with increased aneuploidy. To test and validate these pathways, we induced liver growth in OGT knockouts by partial hepatectomy. OGT knockout livers showed a robust aneuploidy phenotype with disruptions in mitosis, nutrient sensing, protein metabolism/amino acid metabolism, stress response, and HIPPO signaling demonstrating how OGT is essential in controlling aneuploidy pathways.

Conclusion

These data show how a multi-Omics platform can disentangle the pleotropic nature of O-GlcNAc to discern how OGT fine-tunes multiple cellular pathways involved in aneuploidy.

 

 

You are what you eat

Here is a video of Vimeo. When the iframes is activated, a connection to Vimeo is established and, if necessary, cookies from Vimeo are also used. For further information on cookies policy click here.

Auf Werbeinhalte, die vor, während oder nach Videos von WEBSITE-URL eingeblendet werden, hat WEBSITE-URL keinen Einfluss. Wir übernehmen keine Gewähr für diese Inhalte. Weitere Informationen finden Sie hier.