Cover Story Current Issue

Excessive lipid accumulation in adipose tissue triggers hypertrophy and stress of adipocytes, leading to infiltration of proinflammatory immune cells, fibrosis and adipocyte cell death, collectively referred to as adipose tissue dysfunction. As consequence, adipocytes capacity to store lipids is impaired and fat is ectopically accumulated in organs such as muscle, liver and pancreas, a condition that promotes organ dysfunction and insulin resistance, contributing to the pathogenesis of type 2 diabetes (T2D).

Although fat accumulation in human pancreas was described decades ago, it has for long remained an underexplored facet of ectopic fat distribution. Pancreatic fat has been associated with improved insulin secretion in normoglycaemic subjects, but with impaired insulin secretion in patients at increased risk of T2D. Furthermore, T2D diabetes remission, i.e. recovery of beta cell function was accompanied by reduction of pancreatic fat. These clinical observations point to the controversial role of pancreatic fat in insulin secretion, and emphasize the need for experimental evidence demonstrating plausible lipolysis derived fatty acids-/secretome-mediated effects of pancreatic adipocytes in islets. To date, detailed studies on the mechanistic interactions between pancreatic adipocytes and insulin secretion remain sparse, as reliable in vitro models replicating the unique properties of these cells have been lacking.

Full text

 

Current Issue

Mammalian D-Cysteine controls insulin secretion in the pancreas

Robin Roychaudhuri, Timothy West, Soumyaroop Bhattacharya, Harry G. Saavedra, ... Solomon H. Snyder

Mammalian D-Cysteine controls insulin secretion in the pancreas

Background

D-amino acids are being recognized as important molecules in mammals with function. This is a first identification of endogenous D-cysteine in mammalian pancreas.

Methods

Using a novel stereospecific bioluminescent assay, chiral chromatography, enzyme kinetics and a transgenic mouse model we identify endogenous D-cysteine. We elucidate its function in two mice models of type 1 diabetes (STZ and NOD), and in tests of Glucose Stimulated Insulin Secretion in isolated mouse and human islets and INS-1 832/13 cell line.

Results and Discussion

D-cysteine is synthesized by serine racemase (SR) and SR−/− mice produce 6–10 fold higher levels of insulin in the pancreas and plasma including higher glycogen and ketone bodies in the liver. The excess insulin is stored as amyloid in secretory vesicles and exosomes. In glucose stimulated insulin secretion in mouse and human islets, equimolar amount of D-cysteine showed higher inhibition of insulin secretion compared to D-serine, another closely related stereoisomer synthesized by SR. In mouse models of diabetes (Streptozotocin (STZ) and Non Obese Diabetes (NOD) and human pancreas, the diabetic state showed increased expression of D-cysteine compared to D-serine followed by increased expression of SR. SR−/− mice show decreased cAMP in the pancreas, lower DNA methyltransferase enzymatic and promoter activities followed by reduced phosphorylation of CREB (S133), resulting in decreased methylation of the Ins1 promoter. D-cysteine is efficiently metabolized by D-amino acid oxidase and transported by ASCT2 and Asc1. Dietary supplementation with methyl donors restored the high insulin levels and low DNMT enzymatic activity in SR−/− mice.

Conclusions

Our data show that endogenous D-cysteine in the mammalian pancreas is a regulator of insulin secretion.

Articles in Press

Mammalian D-Cysteine controls insulin secretion in the pancreas

Robin Roychaudhuri, Timothy West, Soumyaroop Bhattacharya, Harry G. Saavedra, ... Solomon H. Snyder

Mammalian D-Cysteine controls insulin secretion in the pancreas

Background

D-amino acids are being recognized as important molecules in mammals with function. This is a first identification of endogenous D-cysteine in mammalian pancreas.

Methods

Using a novel stereospecific bioluminescent assay, chiral chromatography, enzyme kinetics and a transgenic mouse model we identify endogenous D-cysteine. We elucidate its function in two mice models of type 1 diabetes (STZ and NOD), and in tests of Glucose Stimulated Insulin Secretion in isolated mouse and human islets and INS-1 832/13 cell line.

Results and Discussion

D-cysteine is synthesized by serine racemase (SR) and SR−/− mice produce 6–10 fold higher levels of insulin in the pancreas and plasma including higher glycogen and ketone bodies in the liver. The excess insulin is stored as amyloid in secretory vesicles and exosomes. In glucose stimulated insulin secretion in mouse and human islets, equimolar amount of D-cysteine showed higher inhibition of insulin secretion compared to D-serine, another closely related stereoisomer synthesized by SR. In mouse models of diabetes (Streptozotocin (STZ) and Non Obese Diabetes (NOD) and human pancreas, the diabetic state showed increased expression of D-cysteine compared to D-serine followed by increased expression of SR. SR−/− mice show decreased cAMP in the pancreas, lower DNA methyltransferase enzymatic and promoter activities followed by reduced phosphorylation of CREB (S133), resulting in decreased methylation of the Ins1 promoter. D-cysteine is efficiently metabolized by D-amino acid oxidase and transported by ASCT2 and Asc1. Dietary supplementation with methyl donors restored the high insulin levels and low DNMT enzymatic activity in SR−/− mice.

Conclusions

Our data show that endogenous D-cysteine in the mammalian pancreas is a regulator of insulin secretion.

You are what you eat

Here is a video of Vimeo. When the iframes is activated, a connection to Vimeo is established and, if necessary, cookies from Vimeo are also used. For further information on cookies policy click here.

Auf Werbeinhalte, die vor, während oder nach Videos von WEBSITE-URL eingeblendet werden, hat WEBSITE-URL keinen Einfluss. Wir übernehmen keine Gewähr für diese Inhalte. Weitere Informationen finden Sie hier.