Cover Story Current Issue

Weaning involves a dietary switch in mammals, progressively decreasing the reliance on the consumption of a fat-rich milk diet in favour of a carbohydrate-rich diet. Metabolic adaptation to this shift in macronutrient consumption is characterized by reduced hepatic gluconeogenesis, increased liver glycogen content, and changes in lipid metabolism. Such metabolic changes are supported by various nutritional, hormonal, and neuronal factors. Dietary changes during weaning are shown to drive β-cell proliferation and maturation, which is important for the optimal endocrine function of the pancreas. A switch from the nutrient sensor target of rapamycin (mTORC1) to the energy sensor 5′-adenosine monophosphate-activated protein kinase (AMPK) was found critical for functional maturation of β-cells. Furthermore, changes in the macronutrient composition during the weaning process drive alterations in the gut microbiome, which is essential for the development of immune tolerance. The major calcium absorption pathway also changes during weaning, from the paracellular pathway during the suckling stage to the vitamin D dependent transcellular pathway post-weaning. However, the factors that regulate these post-weaning metabolic adaptations are not fully understood.

Full text

 

Current Issue

PET imaging of sodium-glucose cotransporters (SGLTs): Unveiling metabolic dynamics in diabetes and oncology

Konrad Klimek, Xinyu Chen, Takanori Sasaki, Daniel Groener, ... Takahiro Higuchi

PET imaging of sodium-glucose cotransporters (SGLTs): Unveiling metabolic dynamics in diabetes and oncology

Background

Sodium-glucose cotransporters (SGLTs) play a crucial role in glucose regulation and are essential therapeutic targets for diabetes management. Recent advancements have leveraged SGLT-targeted PET imaging to examine these transporters' roles in both health and disease.

Scope of Review

This review highlights recent innovations in PET imaging targeting SGLTs, with a particular focus on SGLT-specific radiotracers, such as alpha-methyl-4-deoxy-4-18F-fluoro-d-glucopyranoside (Me-4FDG). It emphasizes the advantages of these radiotracers over conventional 18F-2-fluoro-2-deoxy-d-glucose (2-FDG) imaging, especially in assessing SGLT activity. Additionally, the review addresses their potential in evaluating the pharmacodynamics of SGLT inhibitors, investigating metabolic changes in diabetes, and staging cancers.

Major Conclusions

SGLT-targeted PET imaging offers promising improvements in diagnostic accuracy and therapeutic planning. The findings underscore the physiological and pathological significance of SGLTs, indicating that this imaging approach could shape future diagnostic and therapeutic strategies in metabolic and oncologic fields.

Articles in Press

PET imaging of sodium-glucose cotransporters (SGLTs): Unveiling metabolic dynamics in diabetes and oncology

Konrad Klimek, Xinyu Chen, Takanori Sasaki, Daniel Groener, ... Takahiro Higuchi

PET imaging of sodium-glucose cotransporters (SGLTs): Unveiling metabolic dynamics in diabetes and oncology

Background

Sodium-glucose cotransporters (SGLTs) play a crucial role in glucose regulation and are essential therapeutic targets for diabetes management. Recent advancements have leveraged SGLT-targeted PET imaging to examine these transporters' roles in both health and disease.

Scope of Review

This review highlights recent innovations in PET imaging targeting SGLTs, with a particular focus on SGLT-specific radiotracers, such as alpha-methyl-4-deoxy-4-18F-fluoro-d-glucopyranoside (Me-4FDG). It emphasizes the advantages of these radiotracers over conventional 18F-2-fluoro-2-deoxy-d-glucose (2-FDG) imaging, especially in assessing SGLT activity. Additionally, the review addresses their potential in evaluating the pharmacodynamics of SGLT inhibitors, investigating metabolic changes in diabetes, and staging cancers.

Major Conclusions

SGLT-targeted PET imaging offers promising improvements in diagnostic accuracy and therapeutic planning. The findings underscore the physiological and pathological significance of SGLTs, indicating that this imaging approach could shape future diagnostic and therapeutic strategies in metabolic and oncologic fields.

Save the Date

12th Helmholtz 
Diabetes Conference 

22-24. Sep, Munich

2022 impact factor: 6.6

You are what you eat

Here is a video of Vimeo. When the iframes is activated, a connection to Vimeo is established and, if necessary, cookies from Vimeo are also used. For further information on cookies policy click here.

Auf Werbeinhalte, die vor, während oder nach Videos von WEBSITE-URL eingeblendet werden, hat WEBSITE-URL keinen Einfluss. Wir übernehmen keine Gewähr für diese Inhalte. Weitere Informationen finden Sie hier.