Cover Story Current Issue

Pancreatic ductal adenocarcinoma (PDAC) poses significant challenges due to its hidden onset, high malignancy, and the lack of effective treatments. Together with surgery, adjuvant or neoadjuvant chemotherapy remains the primary treatment for patients with resectable or borderline resectable disease. However, the extensive metabolic reprogramming exhibited by pancreatic cancer cells interacts with oncogenes to affect the expression of key enzymes and signaling pathways, resulting in limited response to therapy and chemoresistance.

Full text

 

Current Issue

Characterization of LY3324954 a long-acting glucagon-receptor agonist

William Roell, Tamer Coskun, Teayoun Kim, Libbey O’Farrell, ... Kirk M. Habegger

Characterization of LY3324954 a long-acting glucagon-receptor agonist

 

Objective

Glucagon is a crucial regulator of glucose and lipid metabolism as well as whole-body energy balance. Thus, modulation of glucagon receptor (GCGR) activity in the context of single-molecule multi-receptor co-agonists has become an emerging therapeutic target against obesity and obesity-associated metabolic dysfunction. To better elucidate the role of GCGR-signaling when paired with incretin receptor signaling or on its own, we developed, LY3324954, a GCGR agonist with improved potency and selectivity as compared to the native glucagon peptide.

Methods

LY3324954 was administered to DIO mice, rats, dogs, and monkeys to evaluate pharmacokinetic (PK) profile. Biweekly treatments were conducted in lean and DIO mice to characterize LY3324954-effects on glucose homeostasis and energy balance. Single dose studies were also conducted in liver Gcgr-deficient mice to establish receptor specificity.

Results

LY3324954 also exhibited extended PK profile in DIO mice, rats, dogs, and monkeys. When administered every 72 h, LY3324954 treatment stimulated transient glucose and insulin excursions in lean mice. In diet-induced obese mice, LY3324954 treatment stimulates energy expenditure, weight loss, and a reduction of adiposity in a dose-dependent manner. Benefit to whole-body lipid homeostasis was likewise observed in these mice.

Conclusions

Taken together, these studies characterize a long-acting and potent GCGR-agonist and its regulation of glucose and lipid metabolism as well as whole-body energy balance following both acute and chronic treatment in mice.

 

 

Articles in Press

Characterization of LY3324954 a long-acting glucagon-receptor agonist

William Roell, Tamer Coskun, Teayoun Kim, Libbey O’Farrell, ... Kirk M. Habegger

Characterization of LY3324954 a long-acting glucagon-receptor agonist

 

Objective

Glucagon is a crucial regulator of glucose and lipid metabolism as well as whole-body energy balance. Thus, modulation of glucagon receptor (GCGR) activity in the context of single-molecule multi-receptor co-agonists has become an emerging therapeutic target against obesity and obesity-associated metabolic dysfunction. To better elucidate the role of GCGR-signaling when paired with incretin receptor signaling or on its own, we developed, LY3324954, a GCGR agonist with improved potency and selectivity as compared to the native glucagon peptide.

Methods

LY3324954 was administered to DIO mice, rats, dogs, and monkeys to evaluate pharmacokinetic (PK) profile. Biweekly treatments were conducted in lean and DIO mice to characterize LY3324954-effects on glucose homeostasis and energy balance. Single dose studies were also conducted in liver Gcgr-deficient mice to establish receptor specificity.

Results

LY3324954 also exhibited extended PK profile in DIO mice, rats, dogs, and monkeys. When administered every 72 h, LY3324954 treatment stimulated transient glucose and insulin excursions in lean mice. In diet-induced obese mice, LY3324954 treatment stimulates energy expenditure, weight loss, and a reduction of adiposity in a dose-dependent manner. Benefit to whole-body lipid homeostasis was likewise observed in these mice.

Conclusions

Taken together, these studies characterize a long-acting and potent GCGR-agonist and its regulation of glucose and lipid metabolism as well as whole-body energy balance following both acute and chronic treatment in mice.

 

 

Save the Date

12th Helmholtz 
Diabetes Conference 

22-24. Sep, Munich

You are what you eat

Here is a video of Vimeo. When the iframes is activated, a connection to Vimeo is established and, if necessary, cookies from Vimeo are also used. For further information on cookies policy click here.

Auf Werbeinhalte, die vor, während oder nach Videos von WEBSITE-URL eingeblendet werden, hat WEBSITE-URL keinen Einfluss. Wir übernehmen keine Gewähr für diese Inhalte. Weitere Informationen finden Sie hier.