- Volume 92, Current Issue
- Vol 28, October 2019
- Vol 27, September 2019
- Vol 26, August 2019
- Vol 25, July 2019
- Vol 24, June 2019
- Vol 23, May 2019
- Vol 22, April 2019
- Vol 21, March 2019
- Vol 20, February 2019
- Vol 19, January 2019
- Vol 18, December 2018
- Vol 17, November 2018
- Vol 16, October 2018
- Vol 15, September 2018
- Vol 14, August 2018
- Vol 13, July 2018
- Vol 12, June 2018
- Vol 11, May 2018
- Vol 10, April 2018
- Vol 9, March 2018
- Vol 8, February 2018
- Vol 7, January 2018
- Vol 6 No 12, December 2017
- Vol 6 No 11, November 2017
- Vol 6 No 10, October 2017
- Vol 6 No 9, September 2017
- Vol 6 No 8, August 2017
- Vol 6 No 7, July 2017
- Vol 6 No 6, June 2017
- Vol 6 No 5, May 2017
- Vol 6 No 4, April 2017
- Vol 6 No 3, March 2017
- Vol 6 No 2, February 2017
- Vol 6 No 1, January 2017
- Vol 5 No 12, December 2016
- Vol 5 No 11, November 2016
- Vol 5 No 10, October 2016
- Vol 5 No 9, September 2016
- Vol 5 No 8, August 2016
- Vol 5 No 7, July 2016
- Vol 5 No 6, June 2016
- Vol 5 No 5, May 2016
- Vol 5 No 4, April 2016
- Vol 5 No 3, March 2016
- Vol 5 No 2, February 2016
- Vol 5 No 1, January 2016
- Vol 4 No 12, December 2015
- Vol 4 No 11, November 2015
- Vol 4 No 10, October 2015
Cover Story Current Issue

Pancreatic ductal adenocarcinoma (PDAC) poses significant challenges due to its hidden onset, high malignancy, and the lack of effective treatments. Together with surgery, adjuvant or neoadjuvant chemotherapy remains the primary treatment for patients with resectable or borderline resectable disease. However, the extensive metabolic reprogramming exhibited by pancreatic cancer cells interacts with oncogenes to affect the expression of key enzymes and signaling pathways, resulting in limited response to therapy and chemoresistance.
Current Issue
GLIS3: A novel transcriptional regulator of mitochondrial functions and metabolic reprogramming in postnatal kidney and polycystic kidney disease
- Abstract
GLIS3: A novel transcriptional regulator of mitochondrial functions and metabolic reprogramming in postnatal kidney and polycystic kidney disease
Objectives
Deficiency in the transcription factor (TF) GLI-Similar 3 (GLIS3) in humans and mice leads to the development of polycystic kidney disease (PKD). In this study, we investigate the role of GLIS3 in the regulation of energy metabolism and mitochondrial functions in relation to its role in normal kidney and metabolic reprogramming in PKD pathogenesis.
Methods
Transcriptomics, cistromics, and metabolomics were used to obtain insights into the role of GLIS3 in the regulation of energy homeostasis and mitochondrial metabolism in normal kidney and PKD pathogenesis using GLIS3-deficient mice.
Results
Transcriptome analysis showed that many genes critical for mitochondrial biogenesis, oxidative phosphorylation (OXPHOS), fatty acid oxidation (FAO), and the tricarboxylic acid (TCA) cycle, including Tfam, Tfb1m, Tfb2m, Ppargc1a, Ppargc1b, Atp5j2, Hadha, and Sdha, are significantly suppressed in kidneys from both ubiquitous and tissue-specific Glis3-deficient mice. ChIP-Seq analysis demonstrated that GLIS3 is associated with the regulatory region of many of these genes, indicating that their transcription is directly regulated by GLIS3. Cistrome analyses revealed that GLIS3 binding loci frequently located near those of hepatocyte nuclear factor 1-Beta (HNF1B) and nuclear respiratory factor 1 (NRF1) suggesting GLIS3 regulates transcription of many metabolic and mitochondrial function-related genes in coordination with these TFs. Seahorse analysis and untargeted metabolomics corroborated that mitochondrial OXPHOS utilization is suppressed in GLIS3-deficient kidneys and showed that key metabolites in glycolysis, TCA cycle, and glutamine pathways were altered indicating increased reliance on aerobic glycolysis and glutamine anaplerosis. These features of metabolic reprogramming may contribute to a bioenergetic environment that supports renal cyst formation and progression in Glis3-deficient mice kidneys.
Conclusions
We identify GLIS3 as a novel positive regulator of the transition from aerobic glycolysis to OXPHOS in normal early postnatal kidney development by directly regulating the transcription of mitochondrial metabolic genes. Loss of GLIS3 induces several features of renal cell metabolic reprogramming. Our study identifies GLIS3 as a new participant in an interconnected transcription regulatory network, that includes HNF1B and NRF1, critical in the regulation of mitochondrial-related gene expression and energy metabolism in normal postnatal kidneys and PKD pathogenesis in Glis3-deficient mice.
Articles in Press
GLIS3: A novel transcriptional regulator of mitochondrial functions and metabolic reprogramming in postnatal kidney and polycystic kidney disease
- Abstract
GLIS3: A novel transcriptional regulator of mitochondrial functions and metabolic reprogramming in postnatal kidney and polycystic kidney disease
Objectives
Deficiency in the transcription factor (TF) GLI-Similar 3 (GLIS3) in humans and mice leads to the development of polycystic kidney disease (PKD). In this study, we investigate the role of GLIS3 in the regulation of energy metabolism and mitochondrial functions in relation to its role in normal kidney and metabolic reprogramming in PKD pathogenesis.
Methods
Transcriptomics, cistromics, and metabolomics were used to obtain insights into the role of GLIS3 in the regulation of energy homeostasis and mitochondrial metabolism in normal kidney and PKD pathogenesis using GLIS3-deficient mice.
Results
Transcriptome analysis showed that many genes critical for mitochondrial biogenesis, oxidative phosphorylation (OXPHOS), fatty acid oxidation (FAO), and the tricarboxylic acid (TCA) cycle, including Tfam, Tfb1m, Tfb2m, Ppargc1a, Ppargc1b, Atp5j2, Hadha, and Sdha, are significantly suppressed in kidneys from both ubiquitous and tissue-specific Glis3-deficient mice. ChIP-Seq analysis demonstrated that GLIS3 is associated with the regulatory region of many of these genes, indicating that their transcription is directly regulated by GLIS3. Cistrome analyses revealed that GLIS3 binding loci frequently located near those of hepatocyte nuclear factor 1-Beta (HNF1B) and nuclear respiratory factor 1 (NRF1) suggesting GLIS3 regulates transcription of many metabolic and mitochondrial function-related genes in coordination with these TFs. Seahorse analysis and untargeted metabolomics corroborated that mitochondrial OXPHOS utilization is suppressed in GLIS3-deficient kidneys and showed that key metabolites in glycolysis, TCA cycle, and glutamine pathways were altered indicating increased reliance on aerobic glycolysis and glutamine anaplerosis. These features of metabolic reprogramming may contribute to a bioenergetic environment that supports renal cyst formation and progression in Glis3-deficient mice kidneys.
Conclusions
We identify GLIS3 as a novel positive regulator of the transition from aerobic glycolysis to OXPHOS in normal early postnatal kidney development by directly regulating the transcription of mitochondrial metabolic genes. Loss of GLIS3 induces several features of renal cell metabolic reprogramming. Our study identifies GLIS3 as a new participant in an interconnected transcription regulatory network, that includes HNF1B and NRF1, critical in the regulation of mitochondrial-related gene expression and energy metabolism in normal postnatal kidneys and PKD pathogenesis in Glis3-deficient mice.
Save the Date

12th Helmholtz
Diabetes Conference
22-24. Sep, Munich
You are what you eat
Here is a video of Vimeo. When the iframes is activated, a connection to Vimeo is established and, if necessary, cookies from Vimeo are also used. For further information on cookies policy click here.