- Volume 92, Current Issue
- Vol 28, October 2019
- Vol 27, September 2019
- Vol 26, August 2019
- Vol 25, July 2019
- Vol 24, June 2019
- Vol 23, May 2019
- Vol 22, April 2019
- Vol 21, March 2019
- Vol 20, February 2019
- Vol 19, January 2019
- Vol 18, December 2018
- Vol 17, November 2018
- Vol 16, October 2018
- Vol 15, September 2018
- Vol 14, August 2018
- Vol 13, July 2018
- Vol 12, June 2018
- Vol 11, May 2018
- Vol 10, April 2018
- Vol 9, March 2018
- Vol 8, February 2018
- Vol 7, January 2018
- Vol 6 No 12, December 2017
- Vol 6 No 11, November 2017
- Vol 6 No 10, October 2017
- Vol 6 No 9, September 2017
- Vol 6 No 8, August 2017
- Vol 6 No 7, July 2017
- Vol 6 No 6, June 2017
- Vol 6 No 5, May 2017
- Vol 6 No 4, April 2017
- Vol 6 No 3, March 2017
- Vol 6 No 2, February 2017
- Vol 6 No 1, January 2017
- Vol 5 No 12, December 2016
- Vol 5 No 11, November 2016
- Vol 5 No 10, October 2016
- Vol 5 No 9, September 2016
- Vol 5 No 8, August 2016
- Vol 5 No 7, July 2016
- Vol 5 No 6, June 2016
- Vol 5 No 5, May 2016
- Vol 5 No 4, April 2016
- Vol 5 No 3, March 2016
- Vol 5 No 2, February 2016
- Vol 5 No 1, January 2016
- Vol 4 No 12, December 2015
- Vol 4 No 11, November 2015
- Vol 4 No 10, October 2015
Cover Story Current Issue

Pancreatic ductal adenocarcinoma (PDAC) poses significant challenges due to its hidden onset, high malignancy, and the lack of effective treatments. Together with surgery, adjuvant or neoadjuvant chemotherapy remains the primary treatment for patients with resectable or borderline resectable disease. However, the extensive metabolic reprogramming exhibited by pancreatic cancer cells interacts with oncogenes to affect the expression of key enzymes and signaling pathways, resulting in limited response to therapy and chemoresistance.
Current Issue
Macrophages on the run: Exercise balances macrophage polarization for improved health
- Abstract
Macrophages on the run: Exercise balances macrophage polarization for improved health
Objective
Exercise plays a crucial role in maintaining and improving human health. However, the precise molecular mechanisms that govern the body’s response to exercise or/compared to periods of inactivity remain elusive. Current evidence appears to suggest that exercise exerts a seemingly dual influence on macrophage polarization states, inducing both pro-immune response M1 activation and cell-repair-focused M2 activation. To reconcile this apparent paradox, we leveraged a comprehensive meta-analysis of 75 diverse exercise and immobilization published datasets (7000+ samples), encompassing various exercise modalities, sampling techniques, and species.
Methods
75 exercise and immobilization expression datasets were identified and processed for analysis. The data was analyzed using boolean relationships which uses binary gene expression relationships in order to increase the signal to noise achieved from the data, allowing for the use of comparison across such a diverse set of datasets. We utilized a boolean relationship-aided macrophage gene model [1], to model the macrophage polarization state in pre and post exercise samples in both immediate exercise and long term training.
Results
Our modeling uncovered a key temporal dynamic: exercise triggers an immediate M1 surge, while long term training transitions to sustained M2 activation. These patterns were consistent across different species (human vs mouse), sampling methods (blood vs muscle biopsy), and exercise type (resistance vs endurance), and routinely showed statistically significant results. Immobilization was shown to have the opposite effect of exercise by triggering an immediate M2 activation. Individual characteristics like gender, exercise intensity and age were found to impact the degree of polarization without changing the overall patterns. To model macrophages within the specific context of muscle tissue, we identified a focused gene set signature of muscle resident macrophage polarization, allowing for the precise measurement of macrophage activity in response to exercise within the muscle.
Conclusions
These consistent patterns across all 75 examined studies suggest that the long term health benefits of exercise stem from its ability to orchestrate a balanced and temporally-regulated interplay between pro-immune response (M1) and reparative macrophage activity (M2). Similarly, it suggests that an imbalance between pro-immune and cell repair responses could facilitate disease development. Our findings shed light on the intricate molecular choreography behind exercise-induced health benefits with a particular insight on its effect on the macrophages within the muscle.
Articles in Press
Macrophages on the run: Exercise balances macrophage polarization for improved health
- Abstract
Macrophages on the run: Exercise balances macrophage polarization for improved health
Objective
Exercise plays a crucial role in maintaining and improving human health. However, the precise molecular mechanisms that govern the body’s response to exercise or/compared to periods of inactivity remain elusive. Current evidence appears to suggest that exercise exerts a seemingly dual influence on macrophage polarization states, inducing both pro-immune response M1 activation and cell-repair-focused M2 activation. To reconcile this apparent paradox, we leveraged a comprehensive meta-analysis of 75 diverse exercise and immobilization published datasets (7000+ samples), encompassing various exercise modalities, sampling techniques, and species.
Methods
75 exercise and immobilization expression datasets were identified and processed for analysis. The data was analyzed using boolean relationships which uses binary gene expression relationships in order to increase the signal to noise achieved from the data, allowing for the use of comparison across such a diverse set of datasets. We utilized a boolean relationship-aided macrophage gene model [1], to model the macrophage polarization state in pre and post exercise samples in both immediate exercise and long term training.
Results
Our modeling uncovered a key temporal dynamic: exercise triggers an immediate M1 surge, while long term training transitions to sustained M2 activation. These patterns were consistent across different species (human vs mouse), sampling methods (blood vs muscle biopsy), and exercise type (resistance vs endurance), and routinely showed statistically significant results. Immobilization was shown to have the opposite effect of exercise by triggering an immediate M2 activation. Individual characteristics like gender, exercise intensity and age were found to impact the degree of polarization without changing the overall patterns. To model macrophages within the specific context of muscle tissue, we identified a focused gene set signature of muscle resident macrophage polarization, allowing for the precise measurement of macrophage activity in response to exercise within the muscle.
Conclusions
These consistent patterns across all 75 examined studies suggest that the long term health benefits of exercise stem from its ability to orchestrate a balanced and temporally-regulated interplay between pro-immune response (M1) and reparative macrophage activity (M2). Similarly, it suggests that an imbalance between pro-immune and cell repair responses could facilitate disease development. Our findings shed light on the intricate molecular choreography behind exercise-induced health benefits with a particular insight on its effect on the macrophages within the muscle.
Save the Date

12th Helmholtz
Diabetes Conference
22-24. Sep, Munich
You are what you eat
Here is a video of Vimeo. When the iframes is activated, a connection to Vimeo is established and, if necessary, cookies from Vimeo are also used. For further information on cookies policy click here.