Cover Story Current Issue

In recent decades, the consumption of fructose in Western societies has surged to unprecedented levels, primarily driven by agricultural and industrial advancements in the production of sweeteners such as sucrose and high-fructose corn syrup (HFCS). This increased fructose intake has contributed significantly to the escalating prevalence of obesity and associated metabolic diseases, such as type 2 diabetes (T2D) and metabolic dysfunction-associated steatotic liver disease (MASLD).

Full text

 

Current Issue

Nutrient control of splice site selection contributes to methionine addiction of cancer

Da-Wei Lin, Francisco G. Carranza, Stacey Borrego, Linda Lauinger, ... Peter Kaiser

Nutrient control of splice site selection contributes to methionine addiction of cancer

 

Objective

Many cancer cells depend on exogenous methionine for proliferation, whereas non-tumorigenic cells can divide in media supplemented with the metabolic precursor homocysteine. This phenomenon is known as methionine dependence of cancer or methionine addiction. The underlying mechanisms driving this cancer-specific metabolic addiction are poorly understood. Here we find that methionine dependence is associated with severe dysregulation of pre-mRNA splicing.

Methods

We used triple-negative breast cancer cells and their methionine-independent derivatives R8 to compare RNA expression profiles in methionine and homocysteine growth media. The data set was also analyzed for alternative splicing.

Results

When tumorigenic cells were cultured in homocysteine medium, cancer cells failed to efficiently methylate the spliceosomal snRNP component SmD1, which resulted in reduced binding to the Survival-of-Motor-Neuron protein SMN leading to aberrant splicing. These effects were specific for cancer cells as neither Sm protein methylation nor splicing fidelity was affected when non-tumorigenic cells were cultured in homocysteine medium. Sm protein methylation is catalyzed by Protein Arginine Methyl Transferase 5 (Prmt5). Reducing methionine concentrations in the culture medium sensitized cancer cells to Prmt5 inhibition supporting a mechanistic link between methionine dependence of cancer and splicing.

Conclusions

Our results link nutritional demands to splicing changes and thereby provide a link between the cancer-specific metabolic phenomenon, described as methionine addiction over 40 years ago, with a defined cellular pathway that contributes to cancer cell proliferation.

 

 

Articles in Press

Nutrient control of splice site selection contributes to methionine addiction of cancer

Da-Wei Lin, Francisco G. Carranza, Stacey Borrego, Linda Lauinger, ... Peter Kaiser

Nutrient control of splice site selection contributes to methionine addiction of cancer

 

Objective

Many cancer cells depend on exogenous methionine for proliferation, whereas non-tumorigenic cells can divide in media supplemented with the metabolic precursor homocysteine. This phenomenon is known as methionine dependence of cancer or methionine addiction. The underlying mechanisms driving this cancer-specific metabolic addiction are poorly understood. Here we find that methionine dependence is associated with severe dysregulation of pre-mRNA splicing.

Methods

We used triple-negative breast cancer cells and their methionine-independent derivatives R8 to compare RNA expression profiles in methionine and homocysteine growth media. The data set was also analyzed for alternative splicing.

Results

When tumorigenic cells were cultured in homocysteine medium, cancer cells failed to efficiently methylate the spliceosomal snRNP component SmD1, which resulted in reduced binding to the Survival-of-Motor-Neuron protein SMN leading to aberrant splicing. These effects were specific for cancer cells as neither Sm protein methylation nor splicing fidelity was affected when non-tumorigenic cells were cultured in homocysteine medium. Sm protein methylation is catalyzed by Protein Arginine Methyl Transferase 5 (Prmt5). Reducing methionine concentrations in the culture medium sensitized cancer cells to Prmt5 inhibition supporting a mechanistic link between methionine dependence of cancer and splicing.

Conclusions

Our results link nutritional demands to splicing changes and thereby provide a link between the cancer-specific metabolic phenomenon, described as methionine addiction over 40 years ago, with a defined cellular pathway that contributes to cancer cell proliferation.

 

 

Save the Date

12th Helmholtz 
Diabetes Conference 

22-24. Sep, Munich

You are what you eat

Here is a video of Vimeo. When the iframes is activated, a connection to Vimeo is established and, if necessary, cookies from Vimeo are also used. For further information on cookies policy click here.

Auf Werbeinhalte, die vor, während oder nach Videos von WEBSITE-URL eingeblendet werden, hat WEBSITE-URL keinen Einfluss. Wir übernehmen keine Gewähr für diese Inhalte. Weitere Informationen finden Sie hier.