Cover Story Current Issue

In recent decades, the consumption of fructose in Western societies has surged to unprecedented levels, primarily driven by agricultural and industrial advancements in the production of sweeteners such as sucrose and high-fructose corn syrup (HFCS). This increased fructose intake has contributed significantly to the escalating prevalence of obesity and associated metabolic diseases, such as type 2 diabetes (T2D) and metabolic dysfunction-associated steatotic liver disease (MASLD).

Full text

 

Current Issue

Novel translational mouse models of metabolic dysfunction-associated steatotic liver disease comparable to human MASLD with severe obesity

Katharina L. Hupa-Breier, Heiko Schenk, Alejandro Campos-Murguia, Freya Wellhöner, ... Richard Taubert

Novel translational mouse models of metabolic dysfunction-associated steatotic liver disease comparable to human MASLD with severe obesity

 

Objective

Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common cause of chronic liver disease, especially in patients with severe obesity. However, current mouse models for MASLD do not reflect the polygenetic background nor the metabolic changes in this population. Therefore, we investigated two novel mouse models of MASLD with a polygenetic background for the metabolic syndrome.

Methods

TALLYHO/JngJ mice and NONcNZO10/LtJ mice were fed a high-fat- high-carbohydrate (HF-HC) diet with a surplus of cholesterol diet. A second group of TH mice was additional treated with empagliflozin.

Results

After sixteen weeks of feeding, both strains developed metabolic syndrome with severe obesity and histological manifestation of steatohepatitis, which was associated with significantly increased intrahepatic CD8+cells, CD4+cells and Tregs, contributing to a significant increase in pro-inflammatory and pro-fibrotic gene activation as well as ER stress and oxidative stress. In comparison with the human transcriptomic signature, we could demonstrate a good metabolic similarity, especially for the TH mouse model. Furthermore, TH mice also developed signs of kidney injury as an extrahepatic comorbidity of MASLD. Additional treatment with empagliflozin in TH mice attenuates hepatic steatosis and improves histological manifestation of MASH.

Conclusions

Overall, we have developed two promising new mouse models that are suitable for preclinical studies of MASLD as they recapitulate most of the key features of MASLD.

  •  

 

 

Articles in Press

Novel translational mouse models of metabolic dysfunction-associated steatotic liver disease comparable to human MASLD with severe obesity

Katharina L. Hupa-Breier, Heiko Schenk, Alejandro Campos-Murguia, Freya Wellhöner, ... Richard Taubert

Novel translational mouse models of metabolic dysfunction-associated steatotic liver disease comparable to human MASLD with severe obesity

 

Objective

Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common cause of chronic liver disease, especially in patients with severe obesity. However, current mouse models for MASLD do not reflect the polygenetic background nor the metabolic changes in this population. Therefore, we investigated two novel mouse models of MASLD with a polygenetic background for the metabolic syndrome.

Methods

TALLYHO/JngJ mice and NONcNZO10/LtJ mice were fed a high-fat- high-carbohydrate (HF-HC) diet with a surplus of cholesterol diet. A second group of TH mice was additional treated with empagliflozin.

Results

After sixteen weeks of feeding, both strains developed metabolic syndrome with severe obesity and histological manifestation of steatohepatitis, which was associated with significantly increased intrahepatic CD8+cells, CD4+cells and Tregs, contributing to a significant increase in pro-inflammatory and pro-fibrotic gene activation as well as ER stress and oxidative stress. In comparison with the human transcriptomic signature, we could demonstrate a good metabolic similarity, especially for the TH mouse model. Furthermore, TH mice also developed signs of kidney injury as an extrahepatic comorbidity of MASLD. Additional treatment with empagliflozin in TH mice attenuates hepatic steatosis and improves histological manifestation of MASH.

Conclusions

Overall, we have developed two promising new mouse models that are suitable for preclinical studies of MASLD as they recapitulate most of the key features of MASLD.

  •  

 

 

Save the Date

12th Helmholtz 
Diabetes Conference 

22-24. Sep, Munich

You are what you eat

Here is a video of Vimeo. When the iframes is activated, a connection to Vimeo is established and, if necessary, cookies from Vimeo are also used. For further information on cookies policy click here.

Auf Werbeinhalte, die vor, während oder nach Videos von WEBSITE-URL eingeblendet werden, hat WEBSITE-URL keinen Einfluss. Wir übernehmen keine Gewähr für diese Inhalte. Weitere Informationen finden Sie hier.