- Volume 93, Current Issue
- Vol 28, October 2019
- Vol 27, September 2019
- Vol 26, August 2019
- Vol 25, July 2019
- Vol 24, June 2019
- Vol 23, May 2019
- Vol 22, April 2019
- Vol 21, March 2019
- Vol 20, February 2019
- Vol 19, January 2019
- Vol 18, December 2018
- Vol 17, November 2018
- Vol 16, October 2018
- Vol 15, September 2018
- Vol 14, August 2018
- Vol 13, July 2018
- Vol 12, June 2018
- Vol 11, May 2018
- Vol 10, April 2018
- Vol 9, March 2018
- Vol 8, February 2018
- Vol 7, January 2018
- Vol 6 No 12, December 2017
- Vol 6 No 11, November 2017
- Vol 6 No 10, October 2017
- Vol 6 No 9, September 2017
- Vol 6 No 8, August 2017
- Vol 6 No 7, July 2017
- Vol 6 No 6, June 2017
- Vol 6 No 5, May 2017
- Vol 6 No 4, April 2017
- Vol 6 No 3, March 2017
- Vol 6 No 2, February 2017
- Vol 6 No 1, January 2017
- Vol 5 No 12, December 2016
- Vol 5 No 11, November 2016
- Vol 5 No 10, October 2016
- Vol 5 No 9, September 2016
- Vol 5 No 8, August 2016
- Vol 5 No 7, July 2016
- Vol 5 No 6, June 2016
- Vol 5 No 5, May 2016
- Vol 5 No 4, April 2016
- Vol 5 No 3, March 2016
- Vol 5 No 2, February 2016
- Vol 5 No 1, January 2016
- Vol 4 No 12, December 2015
- Vol 4 No 11, November 2015
- Vol 4 No 10, October 2015
Cover Story Current Issue

In recent decades, the consumption of fructose in Western societies has surged to unprecedented levels, primarily driven by agricultural and industrial advancements in the production of sweeteners such as sucrose and high-fructose corn syrup (HFCS). This increased fructose intake has contributed significantly to the escalating prevalence of obesity and associated metabolic diseases, such as type 2 diabetes (T2D) and metabolic dysfunction-associated steatotic liver disease (MASLD).
Current Issue
High fructose rewires gut glucose sensing via glucagon-like peptide 2 to impair metabolic regulation in mice
- Abstract
High fructose rewires gut glucose sensing via glucagon-like peptide 2 to impair metabolic regulation in mice
Objective
Increased fructose consumption contributes to type 2 diabetes (T2D) and metabolic dysfunction-associated steatotic liver disease (MASLD), but the mechanisms are ill-defined. Gut nutrient sensing involves enterohormones like Glucagon-like peptide (Glp)2, which regulates the absorptive capacity of luminal nutrients. While glucose is the primary dietary energy source absorbed in the gut, it is unknown whether excess fructose alters gut glucose sensing to impair blood glucose regulation and liver homeostasis.
Methods
Mice were fed diets where carbohydrates were either entirely glucose (70 %Kcal) or glucose partially replaced with fructose (8.5 %Kcal). Glp2 receptor (Glp2r) was inhibited with Glp2 (3-33) injections. Glucose tolerance, insulin sensitivity, and gut glucose absorption were concomitantly assessed, and enteric sugar transporters and absorptive surface were quantified by RT-qPCR and histological analysis, respectively.
Results
High fructose feeding led to impairment of blood glucose disposal, ectopic fat accumulation in the liver, and hepatic (but not muscle or adipose tissue) insulin resistance independent of changes in fat mass. This was accompanied by increased gut glucose absorption, which preceded glucose intolerance and liver steatosis. Fructose upregulated glucose transporters and enlarged the gut surface, but these effects were prevented by Glp2r inhibition. Blocking Glp2r prevented fructose-induced impairments in glucose disposal and hepatic lipid handling.
Conclusion
Excess fructose impairs blood glucose and liver homeostasis by rewiring gut glucose sensing and exacerbating gut glucose absorption. Our findings are positioned to inform novel early diagnostic tools and treatments tailored to counter high fructose-induced metabolic derangements predisposing to T2D and MASLD.
Articles in Press
High fructose rewires gut glucose sensing via glucagon-like peptide 2 to impair metabolic regulation in mice
- Abstract
High fructose rewires gut glucose sensing via glucagon-like peptide 2 to impair metabolic regulation in mice
Objective
Increased fructose consumption contributes to type 2 diabetes (T2D) and metabolic dysfunction-associated steatotic liver disease (MASLD), but the mechanisms are ill-defined. Gut nutrient sensing involves enterohormones like Glucagon-like peptide (Glp)2, which regulates the absorptive capacity of luminal nutrients. While glucose is the primary dietary energy source absorbed in the gut, it is unknown whether excess fructose alters gut glucose sensing to impair blood glucose regulation and liver homeostasis.
Methods
Mice were fed diets where carbohydrates were either entirely glucose (70 %Kcal) or glucose partially replaced with fructose (8.5 %Kcal). Glp2 receptor (Glp2r) was inhibited with Glp2 (3-33) injections. Glucose tolerance, insulin sensitivity, and gut glucose absorption were concomitantly assessed, and enteric sugar transporters and absorptive surface were quantified by RT-qPCR and histological analysis, respectively.
Results
High fructose feeding led to impairment of blood glucose disposal, ectopic fat accumulation in the liver, and hepatic (but not muscle or adipose tissue) insulin resistance independent of changes in fat mass. This was accompanied by increased gut glucose absorption, which preceded glucose intolerance and liver steatosis. Fructose upregulated glucose transporters and enlarged the gut surface, but these effects were prevented by Glp2r inhibition. Blocking Glp2r prevented fructose-induced impairments in glucose disposal and hepatic lipid handling.
Conclusion
Excess fructose impairs blood glucose and liver homeostasis by rewiring gut glucose sensing and exacerbating gut glucose absorption. Our findings are positioned to inform novel early diagnostic tools and treatments tailored to counter high fructose-induced metabolic derangements predisposing to T2D and MASLD.
Save the Date

12th Helmholtz
Diabetes Conference
22-24. Sep, Munich
You are what you eat
Here is a video of Vimeo. When the iframes is activated, a connection to Vimeo is established and, if necessary, cookies from Vimeo are also used. For further information on cookies policy click here.