Cover Story Current Issue

Cytosolic phosphoenolpyruvate carboxykinase (PCK1) catalyzes the conversion of oxaloacetate (OAA) to phosphoenolpyruvate (PEP) and CO2 using GTP as a phosphate donor. PCK1 is tightly regulated at the transcriptional level and is highly induced during fasting, especially in the liver.

Full text

 

Current Issue

Excessive Exercise Elicits Poly (ADP-Ribose) Polymerase-1 Activation and Global Protein PARylation Driving Muscle Dysfunction and Performance Impairment

Barbara M. Crisol, Matheus B. Rocha, Beatriz Franco, Ana Paula Morelli, ... Eduardo R. Ropelle

Excessive exercise combined with inadequate recovery time may trigger fatigue, performance impairment, and ultimately the overtraining syndrome. The intramyocellular mechanisms involved in the overtraining syndrome remain only partially known. Here, we combined multi-omics analyses from isogenic BXD mouse strains with a mouse model of overtraining and excessive exercise protocol in mice and humans to evaluate the molecular mechanism involved in the performance impairment induced by excessive exercise. We identified that BXD mouse strains with elevated levels of Parp1 gene expression in the skeletal muscle displayed features like overtraining syndrome and abnormal muscle genetic signature. High PARP1 protein content and aberrant PARylation of proteins were detected in the skeletal muscle of overtrained, but not in trained mice. Overtraining syndrome reduced mitochondrial function promoted by exercise training, induced muscle hyperalgesia, reduced muscle fiber size and promoted a similar gene signature of myopathy and atrophy models. Short periods of excessive exercise also increased PARylation in the skeletal muscle of mice and healthy subjects. The pharmacological inhibition of PARP1, using Olaparib, and genetic Parp1 ablation, preserved muscle anatomy and protected against physical performance impairment and other symptoms of the overtraining syndrome in mice. In conclusion, PARP1 excessive activation is related to muscle abnormalities led by long or short periods of excessive exercise, and here we suggest that PARP1 is a potential target in the treatment and prevention of overtraining syndrome.

Articles in Press

Excessive Exercise Elicits Poly (ADP-Ribose) Polymerase-1 Activation and Global Protein PARylation Driving Muscle Dysfunction and Performance Impairment

Barbara M. Crisol, Matheus B. Rocha, Beatriz Franco, Ana Paula Morelli, ... Eduardo R. Ropelle

Excessive exercise combined with inadequate recovery time may trigger fatigue, performance impairment, and ultimately the overtraining syndrome. The intramyocellular mechanisms involved in the overtraining syndrome remain only partially known. Here, we combined multi-omics analyses from isogenic BXD mouse strains with a mouse model of overtraining and excessive exercise protocol in mice and humans to evaluate the molecular mechanism involved in the performance impairment induced by excessive exercise. We identified that BXD mouse strains with elevated levels of Parp1 gene expression in the skeletal muscle displayed features like overtraining syndrome and abnormal muscle genetic signature. High PARP1 protein content and aberrant PARylation of proteins were detected in the skeletal muscle of overtrained, but not in trained mice. Overtraining syndrome reduced mitochondrial function promoted by exercise training, induced muscle hyperalgesia, reduced muscle fiber size and promoted a similar gene signature of myopathy and atrophy models. Short periods of excessive exercise also increased PARylation in the skeletal muscle of mice and healthy subjects. The pharmacological inhibition of PARP1, using Olaparib, and genetic Parp1 ablation, preserved muscle anatomy and protected against physical performance impairment and other symptoms of the overtraining syndrome in mice. In conclusion, PARP1 excessive activation is related to muscle abnormalities led by long or short periods of excessive exercise, and here we suggest that PARP1 is a potential target in the treatment and prevention of overtraining syndrome.

Save the Date

12th Helmholtz 
Diabetes Conference 

22-24. Sep, Munich

You are what you eat

Here is a video of Vimeo. When the iframes is activated, a connection to Vimeo is established and, if necessary, cookies from Vimeo are also used. For further information on cookies policy click here.

Auf Werbeinhalte, die vor, während oder nach Videos von WEBSITE-URL eingeblendet werden, hat WEBSITE-URL keinen Einfluss. Wir übernehmen keine Gewähr für diese Inhalte. Weitere Informationen finden Sie hier.