- Volume 94, Current Issue
- Vol 28, October 2019
- Vol 27, September 2019
- Vol 26, August 2019
- Vol 25, July 2019
- Vol 24, June 2019
- Vol 23, May 2019
- Vol 22, April 2019
- Vol 21, March 2019
- Vol 20, February 2019
- Vol 19, January 2019
- Vol 18, December 2018
- Vol 17, November 2018
- Vol 16, October 2018
- Vol 15, September 2018
- Vol 14, August 2018
- Vol 13, July 2018
- Vol 12, June 2018
- Vol 11, May 2018
- Vol 10, April 2018
- Vol 9, March 2018
- Vol 8, February 2018
- Vol 7, January 2018
- Vol 6 No 12, December 2017
- Vol 6 No 11, November 2017
- Vol 6 No 10, October 2017
- Vol 6 No 9, September 2017
- Vol 6 No 8, August 2017
- Vol 6 No 7, July 2017
- Vol 6 No 6, June 2017
- Vol 6 No 5, May 2017
- Vol 6 No 4, April 2017
- Vol 6 No 3, March 2017
- Vol 6 No 2, February 2017
- Vol 6 No 1, January 2017
- Vol 5 No 12, December 2016
- Vol 5 No 11, November 2016
- Vol 5 No 10, October 2016
- Vol 5 No 9, September 2016
- Vol 5 No 8, August 2016
- Vol 5 No 7, July 2016
- Vol 5 No 6, June 2016
- Vol 5 No 5, May 2016
- Vol 5 No 4, April 2016
- Vol 5 No 3, March 2016
- Vol 5 No 2, February 2016
- Vol 5 No 1, January 2016
- Vol 4 No 12, December 2015
- Vol 4 No 11, November 2015
- Vol 4 No 10, October 2015
Cover Story Current Issue

Cytosolic phosphoenolpyruvate carboxykinase (PCK1) catalyzes the conversion of oxaloacetate (OAA) to phosphoenolpyruvate (PEP) and CO2 using GTP as a phosphate donor. PCK1 is tightly regulated at the transcriptional level and is highly induced during fasting, especially in the liver.
Current Issue
A Key Role for Parabrachial Nucleus CGRP Neurons in FGF1-Induced Anorexia
- Abstract
In addition to sustained glucose lowering, centrally administered fibroblast growth factor 1 (FGF1) induces a potent but transient anorexia in animal models of type 2 diabetes. To investigate the mechanism(s) underlying this anorexic response, the current work focused on a specific neuronal subset located in the external lateral subdivision of the parabrachial nucleus marked by the expression of calcitonin gene-related peptide (elPBNCGRP neurons). These neurons can be activated by withdrawal of upstream GABAergic inhibitory input and are implicated as mediators of the adaptive response (including anorexia) to a wide range of aversive stimuli. To determine if FGF1-induced anorexia is associated with elPBNCGRP neuron activation, we employed adult male CalcaCre:GFP/+ transgenic mice in which GFP is fused to Cre recombinase driven by the CGRP-encoding gene Calca. Here, we show that FGF1 activates elPBNCGRP neurons, both after intracerebroventricular (icv) injection in vivo and when applied ex vivo in a slice preparation, and that the mechanism underlying this effect depends upon reduced GABAergic input from neurons lying upstream. Consistent with this interpretation, we report that the anorexic response to icv FGF1 is reduced by ∼70% when elPBNCGRP neurons are silenced using chemogenetics. Last, we report that effects of icv FGF1 injection on both elPBNCGRP neuron activity and food intake are strongly attenuated by systemic administration of the GABAA receptor agonist Bretazenil. We conclude that in adult male mice, elPBNCGRP neuron activation is a key mediator of FGF1-induced anorexia, and that this activation response is mediated at least in part by withdrawal of GABAergic inhibition.
Articles in Press
A Key Role for Parabrachial Nucleus CGRP Neurons in FGF1-Induced Anorexia
- Abstract
In addition to sustained glucose lowering, centrally administered fibroblast growth factor 1 (FGF1) induces a potent but transient anorexia in animal models of type 2 diabetes. To investigate the mechanism(s) underlying this anorexic response, the current work focused on a specific neuronal subset located in the external lateral subdivision of the parabrachial nucleus marked by the expression of calcitonin gene-related peptide (elPBNCGRP neurons). These neurons can be activated by withdrawal of upstream GABAergic inhibitory input and are implicated as mediators of the adaptive response (including anorexia) to a wide range of aversive stimuli. To determine if FGF1-induced anorexia is associated with elPBNCGRP neuron activation, we employed adult male CalcaCre:GFP/+ transgenic mice in which GFP is fused to Cre recombinase driven by the CGRP-encoding gene Calca. Here, we show that FGF1 activates elPBNCGRP neurons, both after intracerebroventricular (icv) injection in vivo and when applied ex vivo in a slice preparation, and that the mechanism underlying this effect depends upon reduced GABAergic input from neurons lying upstream. Consistent with this interpretation, we report that the anorexic response to icv FGF1 is reduced by ∼70% when elPBNCGRP neurons are silenced using chemogenetics. Last, we report that effects of icv FGF1 injection on both elPBNCGRP neuron activity and food intake are strongly attenuated by systemic administration of the GABAA receptor agonist Bretazenil. We conclude that in adult male mice, elPBNCGRP neuron activation is a key mediator of FGF1-induced anorexia, and that this activation response is mediated at least in part by withdrawal of GABAergic inhibition.
Save the Date

12th Helmholtz
Diabetes Conference
22-24. Sep, Munich
You are what you eat
Here is a video of Vimeo. When the iframes is activated, a connection to Vimeo is established and, if necessary, cookies from Vimeo are also used. For further information on cookies policy click here.