Cover Story Current Issue

At the turn of the 19th century, Ivan Pavlov and others established that the secretion of pancreatic juice is induced upon entry of acidic chyme into the duodenum, and that this pancreatic secretion is accelerated by infusion of hydrochloric acid (HCL) into the stomach. Pavlov hypothesized that secretion of pancreatic juice is induced via a neuronal reflex; however, pancreatic secretion prevailed in dogs following denervation of the intestinal vagal and splanchnic nerves, indicating that pancreatic secretion must be mediated by another, as yet unknown, mechanism.

Full text

 

Current Issue

Pre-clinical model of dysregulated FicD AMPylation causes diabetes by disrupting pancreatic endocrine homeostasis

Amanda K. Casey, Nathan M. Stewart, Naqi Zaidi, Hillery F. Gray, ... Kim Orth

Pre-clinical model of dysregulated FicD AMPylation causes diabetes by disrupting pancreatic endocrine homeostasis

The bi-functional enzyme FicD catalyzes AMPylation and deAMPylation of the endoplasmic reticulum chaperone BiP to modulate ER homeostasis and the unfolded protein response (UPR). Human hFicD with an arginine-to-serine mutation disrupts FicD deAMPylation activity resulting in severe neonatal diabetes. We generated the mFicDR371S mutation in mice to create a pre-clinical murine model for neonatal diabetes. We observed elevated BiP AMPylation levels across multiple tissues and signature markers for diabetes including glucose intolerance and reduced serum insulin levels. While the pancreas of mFicDR371S mice appeared normal at birth, adult mFicDR371S mice displayed disturbed pancreatic islet organization that progressed with age. mFicDR371S mice provide a preclinical mouse model for the study of UPR associated diabetes and demonstrate the essentiality of FicD for tissue resilience.

Articles in Press

Pre-clinical model of dysregulated FicD AMPylation causes diabetes by disrupting pancreatic endocrine homeostasis

Amanda K. Casey, Nathan M. Stewart, Naqi Zaidi, Hillery F. Gray, ... Kim Orth

Pre-clinical model of dysregulated FicD AMPylation causes diabetes by disrupting pancreatic endocrine homeostasis

The bi-functional enzyme FicD catalyzes AMPylation and deAMPylation of the endoplasmic reticulum chaperone BiP to modulate ER homeostasis and the unfolded protein response (UPR). Human hFicD with an arginine-to-serine mutation disrupts FicD deAMPylation activity resulting in severe neonatal diabetes. We generated the mFicDR371S mutation in mice to create a pre-clinical murine model for neonatal diabetes. We observed elevated BiP AMPylation levels across multiple tissues and signature markers for diabetes including glucose intolerance and reduced serum insulin levels. While the pancreas of mFicDR371S mice appeared normal at birth, adult mFicDR371S mice displayed disturbed pancreatic islet organization that progressed with age. mFicDR371S mice provide a preclinical mouse model for the study of UPR associated diabetes and demonstrate the essentiality of FicD for tissue resilience.

Save the Date

12th Helmholtz 
Diabetes Conference 

22-24. Sep, Munich

You are what you eat

Here is a video of Vimeo. When the iframes is activated, a connection to Vimeo is established and, if necessary, cookies from Vimeo are also used. For further information on cookies policy click here.

Auf Werbeinhalte, die vor, während oder nach Videos von WEBSITE-URL eingeblendet werden, hat WEBSITE-URL keinen Einfluss. Wir übernehmen keine Gewähr für diese Inhalte. Weitere Informationen finden Sie hier.