Cover Story Current Issue

At the turn of the 19th century, Ivan Pavlov and others established that the secretion of pancreatic juice is induced upon entry of acidic chyme into the duodenum, and that this pancreatic secretion is accelerated by infusion of hydrochloric acid (HCL) into the stomach. Pavlov hypothesized that secretion of pancreatic juice is induced via a neuronal reflex; however, pancreatic secretion prevailed in dogs following denervation of the intestinal vagal and splanchnic nerves, indicating that pancreatic secretion must be mediated by another, as yet unknown, mechanism.

Full text

 

Current Issue

Glucagon-like peptide-2 pharmacotherapy activates hepatic Farnesoid X receptor-signaling to attenuate resection-associated bile acid loss in mice

Johannes Reiner, Nooshin Mohebali, Jens Kurth, Maria Witte, ... Georg Lamprecht

Glucagon-like peptide-2 pharmacotherapy activates hepatic Farnesoid X receptor-signaling to attenuate resection-associated bile acid loss in mice

Objective

Villus growth in the small bowel by Glucagon-like peptide-2 (GLP-2) pharmacotherapy improves intestinal absorption capacity and is now used clinically for the treatment of short bowel syndrome and intestinal failure occurring after extensive intestinal resection. Another recently acknowledged effect of GLP-2 treatment is the inhibition of gallbladder motility and increased gallbladder refilling. However, the impact of these two GLP-2-characteristic effects on bile acid metabolism in health and after intestinal resection is not understood.

Methods

Mice were injected with the GLP-2-analogue teduglutide or vehicle. We combined the selenium-75-homocholic acid taurine (SeHCAT) assay with novel spatial imaging in healthy mice and after ileocecal resection (ICR mice) and associated the results with clinical stage targeted bile acid metabolomics as well as gene expression analyses.

Results

ICR mice had virtual complete intestinal loss of secondary bile acids, and an increased ratio of 12α-hydroxylated vs. non-12α-hydroxylated bile acids, which was attenuated by teduglutide. Teduglutide promoted SeHCAT retention in healthy and in ICR mice. Acute concentration of the SeHCAT-signal into the hepatobiliary system was observed. Teduglutide induced significant repression of hepatic cyp8b1 expression, likely by induction of MAF BZIP Transcription Factor G.

Conclusions

The data suggest that GLP-2-pharmacotherapy in mice significantly slows bile acid circulation primarily via hepatic Farnesoid X receptor-signaling.

Articles in Press

Glucagon-like peptide-2 pharmacotherapy activates hepatic Farnesoid X receptor-signaling to attenuate resection-associated bile acid loss in mice

Johannes Reiner, Nooshin Mohebali, Jens Kurth, Maria Witte, ... Georg Lamprecht

Glucagon-like peptide-2 pharmacotherapy activates hepatic Farnesoid X receptor-signaling to attenuate resection-associated bile acid loss in mice

Objective

Villus growth in the small bowel by Glucagon-like peptide-2 (GLP-2) pharmacotherapy improves intestinal absorption capacity and is now used clinically for the treatment of short bowel syndrome and intestinal failure occurring after extensive intestinal resection. Another recently acknowledged effect of GLP-2 treatment is the inhibition of gallbladder motility and increased gallbladder refilling. However, the impact of these two GLP-2-characteristic effects on bile acid metabolism in health and after intestinal resection is not understood.

Methods

Mice were injected with the GLP-2-analogue teduglutide or vehicle. We combined the selenium-75-homocholic acid taurine (SeHCAT) assay with novel spatial imaging in healthy mice and after ileocecal resection (ICR mice) and associated the results with clinical stage targeted bile acid metabolomics as well as gene expression analyses.

Results

ICR mice had virtual complete intestinal loss of secondary bile acids, and an increased ratio of 12α-hydroxylated vs. non-12α-hydroxylated bile acids, which was attenuated by teduglutide. Teduglutide promoted SeHCAT retention in healthy and in ICR mice. Acute concentration of the SeHCAT-signal into the hepatobiliary system was observed. Teduglutide induced significant repression of hepatic cyp8b1 expression, likely by induction of MAF BZIP Transcription Factor G.

Conclusions

The data suggest that GLP-2-pharmacotherapy in mice significantly slows bile acid circulation primarily via hepatic Farnesoid X receptor-signaling.

Save the Date

12th Helmholtz 
Diabetes Conference 

22-24. Sep, Munich

You are what you eat

Here is a video of Vimeo. When the iframes is activated, a connection to Vimeo is established and, if necessary, cookies from Vimeo are also used. For further information on cookies policy click here.

Auf Werbeinhalte, die vor, während oder nach Videos von WEBSITE-URL eingeblendet werden, hat WEBSITE-URL keinen Einfluss. Wir übernehmen keine Gewähr für diese Inhalte. Weitere Informationen finden Sie hier.