Cover Story Current Issue

At the turn of the 19th century, Ivan Pavlov and others established that the secretion of pancreatic juice is induced upon entry of acidic chyme into the duodenum, and that this pancreatic secretion is accelerated by infusion of hydrochloric acid (HCL) into the stomach. Pavlov hypothesized that secretion of pancreatic juice is induced via a neuronal reflex; however, pancreatic secretion prevailed in dogs following denervation of the intestinal vagal and splanchnic nerves, indicating that pancreatic secretion must be mediated by another, as yet unknown, mechanism.

Full text

 

Current Issue

Glucose-dependent insulinotropic polypeptide (GIP)

Timo D. Müller, Alice Adriaenssens, Bo Ahrén, Matthias Blüher, ... Matthias H. Tschöp

Glucose-dependent insulinotropic polypeptide (GIP)

Background

Glucose-dependent insulinotropic polypeptide (GIP) was the first incretin identified and plays an essential role in the maintenance of glucose tolerance in healthy humans. Until recently GIP had not been developed as a therapeutic and thus has been overshadowed by the other incretin, glucagon-like peptide 1 (GLP-1), which is the basis for several successful drugs to treat diabetes and obesity. However, there has been a rekindling of interest in GIP biology in recent years, in great part due to pharmacology demonstrating that both GIPR agonism and antagonism may be beneficial in treating obesity and diabetes. This apparent paradox has reinvigorated the field, led to new lines of investigation, and deeper understanding of GIP.

Scope of Review

In this review, we provide a detailed overview on the multifaceted nature of GIP biology and discuss the therapeutic implications of GIPR signal modification on various diseases.

Major Conclusions

Following its classification as an incretin hormone, GIP has emerged as a pleiotropic hormone with a variety of metabolic effects outside the endocrine pancreas. The numerous beneficial effects of GIPR signal modification render the peptide an interesting candidate for the development of pharmacotherapies to treat obesity, diabetes, drug-induced nausea and both bone and neurodegenerative disorders.

Articles in Press

Glucose-dependent insulinotropic polypeptide (GIP)

Timo D. Müller, Alice Adriaenssens, Bo Ahrén, Matthias Blüher, ... Matthias H. Tschöp

Glucose-dependent insulinotropic polypeptide (GIP)

Background

Glucose-dependent insulinotropic polypeptide (GIP) was the first incretin identified and plays an essential role in the maintenance of glucose tolerance in healthy humans. Until recently GIP had not been developed as a therapeutic and thus has been overshadowed by the other incretin, glucagon-like peptide 1 (GLP-1), which is the basis for several successful drugs to treat diabetes and obesity. However, there has been a rekindling of interest in GIP biology in recent years, in great part due to pharmacology demonstrating that both GIPR agonism and antagonism may be beneficial in treating obesity and diabetes. This apparent paradox has reinvigorated the field, led to new lines of investigation, and deeper understanding of GIP.

Scope of Review

In this review, we provide a detailed overview on the multifaceted nature of GIP biology and discuss the therapeutic implications of GIPR signal modification on various diseases.

Major Conclusions

Following its classification as an incretin hormone, GIP has emerged as a pleiotropic hormone with a variety of metabolic effects outside the endocrine pancreas. The numerous beneficial effects of GIPR signal modification render the peptide an interesting candidate for the development of pharmacotherapies to treat obesity, diabetes, drug-induced nausea and both bone and neurodegenerative disorders.

Save the Date

12th Helmholtz 
Diabetes Conference 

22-24. Sep, Munich

You are what you eat

Here is a video of Vimeo. When the iframes is activated, a connection to Vimeo is established and, if necessary, cookies from Vimeo are also used. For further information on cookies policy click here.

Auf Werbeinhalte, die vor, während oder nach Videos von WEBSITE-URL eingeblendet werden, hat WEBSITE-URL keinen Einfluss. Wir übernehmen keine Gewähr für diese Inhalte. Weitere Informationen finden Sie hier.