Cover Story Current Issue

Weaning involves a dietary switch in mammals, progressively decreasing the reliance on the consumption of a fat-rich milk diet in favour of a carbohydrate-rich diet. Metabolic adaptation to this shift in macronutrient consumption is characterized by reduced hepatic gluconeogenesis, increased liver glycogen content, and changes in lipid metabolism. Such metabolic changes are supported by various nutritional, hormonal, and neuronal factors. Dietary changes during weaning are shown to drive β-cell proliferation and maturation, which is important for the optimal endocrine function of the pancreas. A switch from the nutrient sensor target of rapamycin (mTORC1) to the energy sensor 5′-adenosine monophosphate-activated protein kinase (AMPK) was found critical for functional maturation of β-cells. Furthermore, changes in the macronutrient composition during the weaning process drive alterations in the gut microbiome, which is essential for the development of immune tolerance. The major calcium absorption pathway also changes during weaning, from the paracellular pathway during the suckling stage to the vitamin D dependent transcellular pathway post-weaning. However, the factors that regulate these post-weaning metabolic adaptations are not fully understood.

Full text

 

Current Issue

Off-target depletion of plasma tryptophan by allosteric inhibitors of BCKDK

Caitlyn E. Bowman, Michael D. Neinast, Ryo Kawakami, Nicholas Forelli, ... Zolt Arany

Off-target depletion of plasma tryptophan by allosteric inhibitors of BCKDK

The activation of branched chain amino acid (BCAA) catabolism has garnered interest as a potential therapeutic approach to improve insulin sensitivity, enhance recovery from heart failure, and blunt tumor growth. Evidence for this interest relies in part on BT2, a small molecule that promotes BCAA oxidation and is protective in mouse models of these pathologies. BT2 and other analogs allosterically inhibit branched chain ketoacid dehydrogenase kinase (BCKDK) to promote BCAA oxidation, which is presumed to underlie the salutary effects of BT2. Potential “off-target” effects of BT2 have not been considered, however. We therefore tested for metabolic off-target effects of BT2 in Bckdk−/− animals. As expected, BT2 failed to activate BCAA oxidation in these animals. Surprisingly, however, BT2 strongly reduced plasma tryptophan levels and promoted catabolism of tryptophan to kynurenine in both control and Bckdk−/− mice. Mechanistic studies revealed that none of the principal tryptophan catabolic or kynurenine-producing/consuming enzymes (TDO, IDO1, IDO2, or KATs) were required for BT2-mediated lowering of plasma tryptophan. Instead, using equilibrium dialysis assays and mice lacking albumin, we show that BT2 avidly binds plasma albumin and displaces tryptophan, releasing it for catabolism. These data confirm that BT2 activates BCAA oxidation via inhibition of BCKDK but also reveal a robust off-target effect on tryptophan metabolism via displacement from serum albumin. The data highlight a potential confounding effect for pharmaceutical compounds that compete for binding with albumin-bound tryptophan.

 

Articles in Press

Off-target depletion of plasma tryptophan by allosteric inhibitors of BCKDK

Caitlyn E. Bowman, Michael D. Neinast, Ryo Kawakami, Nicholas Forelli, ... Zolt Arany

Off-target depletion of plasma tryptophan by allosteric inhibitors of BCKDK

The activation of branched chain amino acid (BCAA) catabolism has garnered interest as a potential therapeutic approach to improve insulin sensitivity, enhance recovery from heart failure, and blunt tumor growth. Evidence for this interest relies in part on BT2, a small molecule that promotes BCAA oxidation and is protective in mouse models of these pathologies. BT2 and other analogs allosterically inhibit branched chain ketoacid dehydrogenase kinase (BCKDK) to promote BCAA oxidation, which is presumed to underlie the salutary effects of BT2. Potential “off-target” effects of BT2 have not been considered, however. We therefore tested for metabolic off-target effects of BT2 in Bckdk−/− animals. As expected, BT2 failed to activate BCAA oxidation in these animals. Surprisingly, however, BT2 strongly reduced plasma tryptophan levels and promoted catabolism of tryptophan to kynurenine in both control and Bckdk−/− mice. Mechanistic studies revealed that none of the principal tryptophan catabolic or kynurenine-producing/consuming enzymes (TDO, IDO1, IDO2, or KATs) were required for BT2-mediated lowering of plasma tryptophan. Instead, using equilibrium dialysis assays and mice lacking albumin, we show that BT2 avidly binds plasma albumin and displaces tryptophan, releasing it for catabolism. These data confirm that BT2 activates BCAA oxidation via inhibition of BCKDK but also reveal a robust off-target effect on tryptophan metabolism via displacement from serum albumin. The data highlight a potential confounding effect for pharmaceutical compounds that compete for binding with albumin-bound tryptophan.

 

Save the Date

12th Helmholtz 
Diabetes Conference 

22-24. Sep, Munich

2022 impact factor: 6.6

You are what you eat

Here is a video of Vimeo. When the iframes is activated, a connection to Vimeo is established and, if necessary, cookies from Vimeo are also used. For further information on cookies policy click here.

Auf Werbeinhalte, die vor, während oder nach Videos von WEBSITE-URL eingeblendet werden, hat WEBSITE-URL keinen Einfluss. Wir übernehmen keine Gewähr für diese Inhalte. Weitere Informationen finden Sie hier.