Cover Story Current Issue

Weaning involves a dietary switch in mammals, progressively decreasing the reliance on the consumption of a fat-rich milk diet in favour of a carbohydrate-rich diet. Metabolic adaptation to this shift in macronutrient consumption is characterized by reduced hepatic gluconeogenesis, increased liver glycogen content, and changes in lipid metabolism. Such metabolic changes are supported by various nutritional, hormonal, and neuronal factors. Dietary changes during weaning are shown to drive β-cell proliferation and maturation, which is important for the optimal endocrine function of the pancreas. A switch from the nutrient sensor target of rapamycin (mTORC1) to the energy sensor 5′-adenosine monophosphate-activated protein kinase (AMPK) was found critical for functional maturation of β-cells. Furthermore, changes in the macronutrient composition during the weaning process drive alterations in the gut microbiome, which is essential for the development of immune tolerance. The major calcium absorption pathway also changes during weaning, from the paracellular pathway during the suckling stage to the vitamin D dependent transcellular pathway post-weaning. However, the factors that regulate these post-weaning metabolic adaptations are not fully understood.

Full text

 

Current Issue

Hepatic stellate cell-specific Kcnma1 deletion mitigates metabolic dysfunction-associated steatotic liver disease progression via upregulating Amphiregulin secretion

Yunhan Zou, Jiaoxiang Wu, Sheng Cheng, Daqing Cheng, ... Bo Han

Hepatic stellate cell-specific Kcnma1 deletion mitigates metabolic dysfunction-associated steatotic liver disease progression via upregulating Amphiregulin secretion

 

Objective

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing global health concern, with limited effective treatments. KCNMA1 potassium channel has been implicated in the pathogenesis of various metabolic diseases. However, whether and how KCNMA1 regulates MASLD have been elusive.

Methods

Global, hepatic stellate cells (HSCs)-specific, and hepatocyte-specific Kcnma1 knockout mice were fed either a standard chow or a high-fat diet (HFD). Serum and liver tissues were collected and analyzed by biochemical assay, histology, qPCR and western blotting. HSCs conditioned medium (CM) treatment hepatocytes experiment model and three-dimensional (3D) hepatocytes-HSCs spheroids were employed to study lipid accumulation in hepatocytes. A Cytokine Antibody Array was used to analyze the cytokine profile.

Results

Our study demonstrated that global Kcnma1 deletion prevented diet-induced hepatic steatosis and improved insulin sensitivity. Further analyses using HSC-specific and hepatocyte-specific Kcnma1 knockout MASLD mouse models revealed that the protective effect against hepatic steatosis was predominantly mediated by Kcnma1 deletion in HSCs, rather than in hepatocytes. CM transfer experiment and 3D spheroid studies show Kcnma1 deletion effectively prevents lipid accumulation in hepatocytes. Mechanically, Kcnma1-deficient HSCs secrete Amphiregulin (AREG) to regulate lipid metabolism in hepatocytes via epidermal growth factor receptor (EGFR) signaling. Of clinical significance, AREG levels were notably reduced in the liver tissue of MASLD patients, while injection of recombinant AREG protein significantly ameliorated MASLD in mice.

Conclusions

Our study uncovers a novel mechanism in which Kcnma1 deletion in HSCs enhances AREG secretion, thereby reducing lipid accumulation in hepatocytes through the AREG/EGFR signaling, ultimately inhibiting the progression of MASLD.

 

 

Articles in Press

Hepatic stellate cell-specific Kcnma1 deletion mitigates metabolic dysfunction-associated steatotic liver disease progression via upregulating Amphiregulin secretion

Yunhan Zou, Jiaoxiang Wu, Sheng Cheng, Daqing Cheng, ... Bo Han

Hepatic stellate cell-specific Kcnma1 deletion mitigates metabolic dysfunction-associated steatotic liver disease progression via upregulating Amphiregulin secretion

 

Objective

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing global health concern, with limited effective treatments. KCNMA1 potassium channel has been implicated in the pathogenesis of various metabolic diseases. However, whether and how KCNMA1 regulates MASLD have been elusive.

Methods

Global, hepatic stellate cells (HSCs)-specific, and hepatocyte-specific Kcnma1 knockout mice were fed either a standard chow or a high-fat diet (HFD). Serum and liver tissues were collected and analyzed by biochemical assay, histology, qPCR and western blotting. HSCs conditioned medium (CM) treatment hepatocytes experiment model and three-dimensional (3D) hepatocytes-HSCs spheroids were employed to study lipid accumulation in hepatocytes. A Cytokine Antibody Array was used to analyze the cytokine profile.

Results

Our study demonstrated that global Kcnma1 deletion prevented diet-induced hepatic steatosis and improved insulin sensitivity. Further analyses using HSC-specific and hepatocyte-specific Kcnma1 knockout MASLD mouse models revealed that the protective effect against hepatic steatosis was predominantly mediated by Kcnma1 deletion in HSCs, rather than in hepatocytes. CM transfer experiment and 3D spheroid studies show Kcnma1 deletion effectively prevents lipid accumulation in hepatocytes. Mechanically, Kcnma1-deficient HSCs secrete Amphiregulin (AREG) to regulate lipid metabolism in hepatocytes via epidermal growth factor receptor (EGFR) signaling. Of clinical significance, AREG levels were notably reduced in the liver tissue of MASLD patients, while injection of recombinant AREG protein significantly ameliorated MASLD in mice.

Conclusions

Our study uncovers a novel mechanism in which Kcnma1 deletion in HSCs enhances AREG secretion, thereby reducing lipid accumulation in hepatocytes through the AREG/EGFR signaling, ultimately inhibiting the progression of MASLD.

 

 

Save the Date

12th Helmholtz 
Diabetes Conference 

22-24. Sep, Munich

2022 impact factor: 6.6

You are what you eat

Here is a video of Vimeo. When the iframes is activated, a connection to Vimeo is established and, if necessary, cookies from Vimeo are also used. For further information on cookies policy click here.

Auf Werbeinhalte, die vor, während oder nach Videos von WEBSITE-URL eingeblendet werden, hat WEBSITE-URL keinen Einfluss. Wir übernehmen keine Gewähr für diese Inhalte. Weitere Informationen finden Sie hier.