Cover Story Current Issue

Weaning involves a dietary switch in mammals, progressively decreasing the reliance on the consumption of a fat-rich milk diet in favour of a carbohydrate-rich diet. Metabolic adaptation to this shift in macronutrient consumption is characterized by reduced hepatic gluconeogenesis, increased liver glycogen content, and changes in lipid metabolism. Such metabolic changes are supported by various nutritional, hormonal, and neuronal factors. Dietary changes during weaning are shown to drive β-cell proliferation and maturation, which is important for the optimal endocrine function of the pancreas. A switch from the nutrient sensor target of rapamycin (mTORC1) to the energy sensor 5′-adenosine monophosphate-activated protein kinase (AMPK) was found critical for functional maturation of β-cells. Furthermore, changes in the macronutrient composition during the weaning process drive alterations in the gut microbiome, which is essential for the development of immune tolerance. The major calcium absorption pathway also changes during weaning, from the paracellular pathway during the suckling stage to the vitamin D dependent transcellular pathway post-weaning. However, the factors that regulate these post-weaning metabolic adaptations are not fully understood.

Full text

 

Current Issue

An Epigenome Atlas of Mouse Adipocytes

Laura C. Hinte, Adhideb Ghosh, Daniel Castellano-Castillo, Christian Wolfrum, Ferdinand von Meyenn

Objective

Epigenetic modifications including histone post translational modifications can influence gene expression in adipocytes, potentially contributing to metabolic dysfunctions, obesity, and insulin resistance. Despite recent advances in the characterization of the mouse adipocyte epigenome, epigenetic characterization of adipocytes in vivo has been challenging, particularly across different adipose depots and of several epigenetic modifications.

Methods

Here, we use specific reporter mice labelling brown, beige and white adipocytes, diphtheria toxin-mediated ablation of beige adipocytes, and Cleavage Under Targets and Tagmentation (CUT&Tag) to generate paired single mouse datasets of five histone marks. We perform an integrative multi-omics factor analysis (MOFA) of H3K4me3, H3K27me3, H3K4me1, H3K27ac and H3K9me3 in brown, white and beige adipocytes from three distinct mouse adipose tissue depots obtained during cold exposure and thermoneutrality.

Results

Our analysis reveals that enhancers distinguish adipocytes by their tissue of origin, with H3K4me1 deposition differentiating between beige and brown adipocytes. Beige adipocytes poised promoters associated to thermogenic genes during warming. Diphtheria toxin-mediated ablation of beige adipocytes shows that non-beigeing white adipocytes in inguinal adipose tissue and beige adipocytes are not inherently epigenetically different suggesting that they share a common developmental progenitor.

Conclusion

These paired multimodal data comprise an extensive resource (https://nme.ethz.ch/mAT_CEAtlas.html) for the further exploration of the mouse adipocyte epigenome which will enable discovery of regulatory elements governing adipocyte identity and gene regulation.

Articles in Press

An Epigenome Atlas of Mouse Adipocytes

Laura C. Hinte, Adhideb Ghosh, Daniel Castellano-Castillo, Christian Wolfrum, Ferdinand von Meyenn

Objective

Epigenetic modifications including histone post translational modifications can influence gene expression in adipocytes, potentially contributing to metabolic dysfunctions, obesity, and insulin resistance. Despite recent advances in the characterization of the mouse adipocyte epigenome, epigenetic characterization of adipocytes in vivo has been challenging, particularly across different adipose depots and of several epigenetic modifications.

Methods

Here, we use specific reporter mice labelling brown, beige and white adipocytes, diphtheria toxin-mediated ablation of beige adipocytes, and Cleavage Under Targets and Tagmentation (CUT&Tag) to generate paired single mouse datasets of five histone marks. We perform an integrative multi-omics factor analysis (MOFA) of H3K4me3, H3K27me3, H3K4me1, H3K27ac and H3K9me3 in brown, white and beige adipocytes from three distinct mouse adipose tissue depots obtained during cold exposure and thermoneutrality.

Results

Our analysis reveals that enhancers distinguish adipocytes by their tissue of origin, with H3K4me1 deposition differentiating between beige and brown adipocytes. Beige adipocytes poised promoters associated to thermogenic genes during warming. Diphtheria toxin-mediated ablation of beige adipocytes shows that non-beigeing white adipocytes in inguinal adipose tissue and beige adipocytes are not inherently epigenetically different suggesting that they share a common developmental progenitor.

Conclusion

These paired multimodal data comprise an extensive resource (https://nme.ethz.ch/mAT_CEAtlas.html) for the further exploration of the mouse adipocyte epigenome which will enable discovery of regulatory elements governing adipocyte identity and gene regulation.

Save the Date

12th Helmholtz 
Diabetes Conference 

22-24. Sep, Munich

2022 impact factor: 6.6

You are what you eat

Here is a video of Vimeo. When the iframes is activated, a connection to Vimeo is established and, if necessary, cookies from Vimeo are also used. For further information on cookies policy click here.

Auf Werbeinhalte, die vor, während oder nach Videos von WEBSITE-URL eingeblendet werden, hat WEBSITE-URL keinen Einfluss. Wir übernehmen keine Gewähr für diese Inhalte. Weitere Informationen finden Sie hier.