Cover Story Current Issue

Excessive lipid accumulation in adipose tissue triggers hypertrophy and stress of adipocytes, leading to infiltration of proinflammatory immune cells, fibrosis and adipocyte cell death, collectively referred to as adipose tissue dysfunction. As consequence, adipocytes capacity to store lipids is impaired and fat is ectopically accumulated in organs such as muscle, liver and pancreas, a condition that promotes organ dysfunction and insulin resistance, contributing to the pathogenesis of type 2 diabetes (T2D).

Although fat accumulation in human pancreas was described decades ago, it has for long remained an underexplored facet of ectopic fat distribution. Pancreatic fat has been associated with improved insulin secretion in normoglycaemic subjects, but with impaired insulin secretion in patients at increased risk of T2D. Furthermore, T2D diabetes remission, i.e. recovery of beta cell function was accompanied by reduction of pancreatic fat. These clinical observations point to the controversial role of pancreatic fat in insulin secretion, and emphasize the need for experimental evidence demonstrating plausible lipolysis derived fatty acids-/secretome-mediated effects of pancreatic adipocytes in islets. To date, detailed studies on the mechanistic interactions between pancreatic adipocytes and insulin secretion remain sparse, as reliable in vitro models replicating the unique properties of these cells have been lacking.

Full text

 

Current Issue

RNA-binding protein YBX3 promotes PPARγ-SLC3A2 mediated BCAA metabolism fueling brown adipogenesis and thermogenesis

Lin-Yun Chen, Li-Wen Wang, Jie Wen, Jing-Dong Cao, ... Xu Feng

RNA-binding protein YBX3 promotes PPARγ-SLC3A2 mediated BCAA metabolism fueling brown adipogenesis and thermogenesis

 

Objective

Activating brown adipose tissue (BAT) thermogenesis is a promising approach to combat obesity and metabolic disorders. The post-transcriptional regulation of BAT thermogenesis mediated by RNA-binding proteins (RBPs) is still not fully understood. This study explores the physiological role of novel RBPs in BAT differentiation and thermogenesis.

Methods

We used multiple public datasets to screen out novel RBPs responsible for BAT differentiation and thermogenesis. In vitro loss- and gain-of-function experiments were performed in both C3H10T1/2 preadipocytes and mature brown adipocytes to determine the role of Y-box binding protein 3 (YBX3) in brown adipocyte differentiation and thermogenesis. Adeno-associated virus (AAV)-mediated BAT-specific knockdown or overexpression of Ybx3 was applied to investigate the function of YBX3 in vivo.

Results

YBX3 is a brown adipocyte-enriched RBP induced by cold stimulation and β-adrenergic signaling. Both in vitro loss- and gain-of-function experiments demonstrate that YBX3 is essential for brown adipocyte differentiation and thermogenesis. BAT-specific loss of Ybx3 dampens thermogenesis and exacerbates diet-induced obesity in mice, while overexpression of Ybx3 promotes thermogenesis and confers protection against diet-induced metabolic dysfunction. Transcriptome analysis and mitochondrial stress test indicate that Ybx3 deficiency compromises the mitochondrial oxidative phosphorylation, leading to thermogenic failure. Mechanistically, YBX3 stabilizes the mRNA of Slc3a2 and Pparg, which facilitates branched-chain amino acid (BCAA) influx and catabolism and fuels brown adipocyte differentiation and thermogenesis.

Conclusions

YBX3 facilitates BAT fueling BCAA to boost thermogenesis and energy expenditure, which protects against obesity and metabolic dysfunction. Thus, YBX3 could be a promising therapeutic target for obesity.

 

 

Articles in Press

RNA-binding protein YBX3 promotes PPARγ-SLC3A2 mediated BCAA metabolism fueling brown adipogenesis and thermogenesis

Lin-Yun Chen, Li-Wen Wang, Jie Wen, Jing-Dong Cao, ... Xu Feng

RNA-binding protein YBX3 promotes PPARγ-SLC3A2 mediated BCAA metabolism fueling brown adipogenesis and thermogenesis

 

Objective

Activating brown adipose tissue (BAT) thermogenesis is a promising approach to combat obesity and metabolic disorders. The post-transcriptional regulation of BAT thermogenesis mediated by RNA-binding proteins (RBPs) is still not fully understood. This study explores the physiological role of novel RBPs in BAT differentiation and thermogenesis.

Methods

We used multiple public datasets to screen out novel RBPs responsible for BAT differentiation and thermogenesis. In vitro loss- and gain-of-function experiments were performed in both C3H10T1/2 preadipocytes and mature brown adipocytes to determine the role of Y-box binding protein 3 (YBX3) in brown adipocyte differentiation and thermogenesis. Adeno-associated virus (AAV)-mediated BAT-specific knockdown or overexpression of Ybx3 was applied to investigate the function of YBX3 in vivo.

Results

YBX3 is a brown adipocyte-enriched RBP induced by cold stimulation and β-adrenergic signaling. Both in vitro loss- and gain-of-function experiments demonstrate that YBX3 is essential for brown adipocyte differentiation and thermogenesis. BAT-specific loss of Ybx3 dampens thermogenesis and exacerbates diet-induced obesity in mice, while overexpression of Ybx3 promotes thermogenesis and confers protection against diet-induced metabolic dysfunction. Transcriptome analysis and mitochondrial stress test indicate that Ybx3 deficiency compromises the mitochondrial oxidative phosphorylation, leading to thermogenic failure. Mechanistically, YBX3 stabilizes the mRNA of Slc3a2 and Pparg, which facilitates branched-chain amino acid (BCAA) influx and catabolism and fuels brown adipocyte differentiation and thermogenesis.

Conclusions

YBX3 facilitates BAT fueling BCAA to boost thermogenesis and energy expenditure, which protects against obesity and metabolic dysfunction. Thus, YBX3 could be a promising therapeutic target for obesity.

 

 

You are what you eat

Here is a video of Vimeo. When the iframes is activated, a connection to Vimeo is established and, if necessary, cookies from Vimeo are also used. For further information on cookies policy click here.

Auf Werbeinhalte, die vor, während oder nach Videos von WEBSITE-URL eingeblendet werden, hat WEBSITE-URL keinen Einfluss. Wir übernehmen keine Gewähr für diese Inhalte. Weitere Informationen finden Sie hier.