Cover Story
Excessive alcohol consumption is the third leading cause of preventable deaths in the US accounting for health care costs of almost $250 billion a year. Alcohol associated-liver disease (ALD) is one of the most detrimental consequences of alcohol abuse because it can progress to cirrhosis, liver failure and death.
All Articles
- Abstract
Ghrelin signalling in AgRP neurons links metabolic state to the sensory regulation of AgRP neural activity
Objective
The sensory detection of food and food cues suppresses Agouti related peptide (AgRP) neuronal activity prior to consumption with greatest suppression occurring in response to highly caloric food or interoceptive energy need. However, the interoceptive mechanisms priming an appropriate AgRP neural response to external sensory information of food availability remain unexplored. Since hunger increases plasma ghrelin, we hypothesized that ghrelin receptor (GHSR) signalling on AgRP neurons is a key interoceptive mechanism integrating energy need with external sensory cues predicting caloric availability.
Methods
We used in vivo photometry to measure the effects of ghrelin administration or fasting on AgRP neural activity with GCaMP6s and dopamine release in the nucleus accumbens with GRAB-DA in mice lacking ghrelin receptors in AgRP neurons.
Results
The deletion of GHSR on AgRP neurons prevented ghrelin-induced food intake, motivation and AgRP activity. The presentation of food (peanut butter pellet) or a wooden dowel suppressed AgRP activity in fasted WT but not mice lacking GHSRs in AgRP neurons. Similarly, peanut butter and a wooden dowel increased dopamine release in the nucleus accumbens after ip ghrelin injection in WT but not mice lacking GHSRs in AgRP neurons. No difference in dopamine release was observed in fasted mice. Finally, ip ghrelin administration did not directly increase dopamine neural activity in the ventral tegmental area.
Conclusions
Our results suggest that AgRP GHSRs integrate an interoceptive state of energy need with external sensory information to produce an optimal change in AgRP neural activity. Thus, ghrelin signalling on AgRP neurons is more than just a feedback signal to increase AgRP activity during hunger.
- Abstract
Hepatic Activin E mediates liver-adipose inter-organ communication, suppressing adipose lipolysis in response to elevated serum fatty acids
Objective
The liver is a central regulator of energy metabolism exerting its influence both through intrinsic processing of substrates such as glucose and fatty acid as well as by secreting endocrine factors, known as hepatokines, which influence metabolism in peripheral tissues. Human genome wide association studies indicate that a predicted loss-of-function variant in the Inhibin βE gene (INHBE), encoding the putative hepatokine Activin E, is associated with reduced abdominal fat mass and cardiometabolic disease risk. However, the regulation of hepatic Activin E and the influence of Activin E on adiposity and metabolic disease are not well understood. Here, we examine the relationship between hepatic Activin E and adipose metabolism, testing the hypothesis that Activin E functions as part of a liver-adipose, inter-organ feedback loop to suppress adipose tissue lipolysis in response to elevated serum fatty acids and hepatic fatty acid exposure.
Methods
The relationship between hepatic Activin E and non-esterified fatty acids (NEFA) released from adipose lipolysis was assessed in vivo using fasted CL 316,243 treated mice and in vitro using Huh7 hepatocytes treated with fatty acids. The influence of Activin E on adipose lipolysis was examined using a combination of Inhbe knockout mice, a mouse model of hepatocyte-specific overexpression of Activin E, and mouse brown adipocytes treated with Activin E enriched media.
Results
Increasing hepatocyte NEFA exposure in vivo by inducing adipose lipolysis through fasting or CL 316,243 treatment increased hepatic Inhbe expression. Similarly, incubation of Huh7 human hepatocytes with fatty acids increased expression of INHBE. Genetic ablation of Inhbe in mice increased fasting circulating NEFA and hepatic triglyceride accumulation. Treatment of mouse brown adipocytes with Activin E conditioned media and overexpression of Activin E in mice suppressed adipose lipolysis and reduced serum FFA levels, respectively. The suppressive effects of Activin E on lipolysis were lost in CRISPR-mediated ALK7 deficient cells and ALK7 kinase deficient mice. Disruption of the Activin E-ALK7 signaling axis in Inhbe KO mice reduced adiposity upon HFD feeding, but caused hepatic steatosis and insulin resistance.
Conclusions
Taken together, our data suggest that Activin E functions as part of a liver-adipose feedback loop, such that in response to increased serum free fatty acids and elevated hepatic triglyceride, Activin E is released from hepatocytes and signals in adipose through ALK7 to suppress lipolysis, thereby reducing free fatty acid efflux to the liver and preventing excessive hepatic lipid accumulation. We find that disrupting this Activin E-ALK7 inter-organ communication network by ablation of Inhbe in mice increases lipolysis and reduces adiposity, but results in elevated hepatic triglyceride and impaired insulin sensitivity. These results highlight the liver-adipose, Activin E-ALK7 signaling axis as a critical regulator of metabolic homeostasis.
- Abstract
The beta cell-immune cell interface in type 1 diabetes (T1D)
Background
T1D is an autoimmune disease in which pancreatic islets of Langerhans are infiltrated by immune cells resulting in the specific destruction of insulin-producing islet beta cells. Our understanding of the factors leading to islet infiltration and the interplay of the immune cells with target beta cells is incomplete, especially in human disease. While murine models of T1D have provided crucial information for both beta cell and autoimmune cell function, the translation of successful therapies in the murine model to human disease has been a challenge.
Scope of review
Here, we discuss current state of the art and consider knowledge gaps concerning the interface of the islet beta cell with immune infiltrates, with a focus on T cells. We discuss pancreatic and immune cell phenotypes and their impact on cell function in health and disease, which we deem important to investigate further to attain a more comprehensive understanding of human T1D disease etiology.
Major conclusions
The last years have seen accelerated development of approaches that allow comprehensive study of human T1D. Critically, recent studies have contributed to our revised understanding that the pancreatic beta cell assumes an active role, rather than a passive position, during autoimmune disease progression. The T cell-beta cell interface is a critical axis that dictates beta cell fate and shapes autoimmune responses. This includes the state of the beta cell after processing internal and external cues (e.g., stress, inflammation, genetic risk) that that contributes to the breaking of tolerance by hyperexpression of human leukocyte antigen (HLA) class I with presentation of native and neoepitopes and secretion of chemotactic factors to attract immune cells. We anticipate that emerging insights about the molecular and cellular aspects of disease initiation and progression processes will catalyze the development of novel and innovative intervention points to provide additional therapies to individuals affected by T1D.
- Abstract
Sensory spinal interoceptive pathways and energy balance regulation
Interoception plays an important role in homeostatic regulation of energy intake and metabolism. Major interoceptive pathways include gut-to-brain and adipose tissue-to brain signaling via vagal sensory nerves and hormones, such as leptin. However, signaling via spinal sensory neurons is rapidly emerging as an additional important signaling pathway. Here we provide an in-depth review of the known anatomy and functions of spinal sensory pathways and discuss potential mechanisms relevant for energy balance homeostasis in health and disease. Because sensory innervation by dorsal root ganglia (DRG) neurons goes far beyond vagally innervated viscera and includes adipose tissue, skeletal muscle, and skin, it is in a position to provide much more complete metabolic information to the brain. Molecular and anatomical identification of function specific DRG neurons will be important steps in designing pharmacological and neuromodulation approaches to affect energy balance regulation in disease states such as obesity, diabetes, and cancer.
- Abstract
Ceramide synthase 6 (CerS6) is upregulated in alcohol-associated liver disease and exhibits sex-based differences in the regulation of energy homeostasis and lipid droplet accumulation
Objective
Alcohol-associated liver disease (ALD) is the leading cause of liver-related mortality worldwide. Current strategies to manage ALD focus largely on advanced stage disease, however, metabolic changes such as glucose intolerance are apparent at the earliest stage of alcoholic steatosis and increase the risk of disease progression. Ceramides impair insulin signaling and accumulate in ALD, and metabolic pathways involving ceramide synthase 6 (CerS6) are perturbed in ALD during hepatic steatosis. In this study, we aimed to investigate the role of CerS6 in ALD development and the relevance of CerS6 to human ALD.
Methods
C57BL/6 WT and CerS6 KO mice of both sexes were fed either a Lieber-DeCarli control (CON) or 15% ethanol (EtOH) diet for six weeks. In vivo metabolic tests including glucose and insulin tolerance tests (GTT and ITT) and energy expenditure were performed. The mice were euthanized, and serum and liver lipids and liver histology were examined. For in vitro studies, CerS6 was deleted in human hepatocytes, VL17A and cells were incubated with EtOH and/or C16:0-ceramides. RNAseq analysis was performed in livers from mice and human patients with different stages of ALD and diseased controls.
Results
After six weeks on an EtOH diet, CerS6 KO mice had reduced body weight, food intake, and %fat mass compared to WT mice. Energy expenditure increased in both male and female KO mice, however, was only statistically significant in male mice. In response to EtOH, WT mice developed mild hepatic steatosis, while steatosis was ameliorated in KO mice as determined by H&E and ORO staining. KO mice showed significantly decreased long-chain ceramide species, especially C16:0-ceramides, in the serum and liver tissues compared to WT mice. CerS6 deletion decreased serum TG and NEFA only in male not female mice. CerS6 deletion improved glucose tolerance and insulin resistance in EtOH-fed mice of both sexes. RNAseq analysis revealed that 74 genes are significantly upregulated and 66 genes are downregulated by CerS6 deletion in EtOH-fed male mice, with key network pathways including TG biosynthetic process, positive regulation of lipid localization, and fat cell differentiation. Similar to RNAseq results, absence of CerS6 significantly decreased mRNA expression of lipid droplet associated proteins in EtOH-fed mice. In vitro, EtOH stimulation significantly increased PLIN2 protein expression in VL17A cells while CerS6 deletion inhibited EtOH-mediated PLIN2 upregulation. C16:0-ceramide treatment significantly increased PLIN2 protein expression compared to CON. Notably, progression of ALD in humans was associated with increased hepatic CerS6 expression.
Conclusions
Our findings demonstrate that CerS6 deletion improves glucose homeostasis in alcohol-fed mice and exhibits sex-based differences in the attenuation of EtOH-induced weight gain and hepatic steatosis. Additionally, we unveil that CerS6 plays a major role as a regulator of lipid droplet biogenesis in alcohol-induced intra-hepatic lipid droplet formation, identifying it as a putative target for early ALD management.
- Abstract
Gemigliptin, a DPP4 inhibitor, ameliorates nonalcoholic steatohepatitis through AMP-activated protein kinase-independent and ULK1-mediated autophagy
Objective
Abnormal autophagic function and activated inflammasomes are typical features in the liver of patients with non-alcoholic steatohepatitis (NASH). Here, we explored whether gemigliptin, a dipeptidyl peptidase 4 (DPP4) inhibitor for treatment of type 2 diabetes, can induce autophagy and regulate inflammasome activation as a potential NASH treatment independent of its anti-diabetic effect.
Methods
Expression analysis was performed using human liver samples obtained from 18 subjects who underwent hepatectomy. We explored the function and mechanism of gemigliptin using a methionine- and choline-deficient diet (MCD)-induced NASH mouse model and HepG2 cells cultured in MCD-mimicking medium.
Results
Autophagy was suppressed by marked decreases in the expression of ULK1 and LC3II/LC3I ratio in human NAFLD/NASH patients, a NASH mouse model, and HepG2 cells cultured with MCD-mimicking media. Surprisingly, we found that the expression of p-AMPK decreased in liver tissues from patients with steatosis but was restored in NASH patients. The expression of p-AMPK in the NASH mouse model was similar to that of the control group. Hence, these results indicate that autophagy was reduced in NASH via an AMPK-independent pathway. However, gemigliptin treatment attenuated lipid accumulation, inflammation, and fibrosis in the liver of MCD diet–fed mice with restoration of ULK1 expression and autophagy induction. In vitro, gemigliptin alleviated inflammasome activation through induction of ULK1-dependent autophagy. Furthermore, gemigliptin treatment upregulated ULK1 expression and activated AMPK even after siRNA-mediated knockdown of AMPKα1/2 and ULK1, respectively.
Conclusions
Collectively, these results suggest that gemigliptin ameliorated NASH via AMPK-independent, ULK1-mediated effects on autophagy.
- Abstract
Results from three phase 1 trials of NNC9204-1177, a glucagon/GLP-1 receptor co-agonist: Effects on weight loss and safety in adults with overweight or obesity
Objective
Glucagon/glucagon-like peptide-1 (GLP-1) receptor co-agonists may provide greater weight loss than agonists targeting the GLP-1 receptor alone. We report results from three phase 1 trials investigating the safety, tolerability, pharmacokinetics and pharmacodynamics of the glucagon/GLP-1 receptor co-agonist NNC9204-1177 (NN1177) for once-weekly subcutaneous use in adults with overweight or obesity.
Methods
Our focus was a 12-week, multiple ascending dose (MAD), placebo-controlled, double-blind trial in which adults (N = 99) received NN1177 (on an escalating dose regimen of 200, 600, 1300, 1900, 2800, 4200 and 6000 μg) or placebo. Two other trials also contributed to the findings reported in this article: a first human dose (FHD)/single ascending dose (SAD), placebo-controlled, double-blind trial in which adults (N = 49) received NN1177 (treatment doses of 10, 40, 120, 350, 700 and 1100 μg) or placebo, and a drug–drug interaction, open-label, single-sequence trial in which adults (N = 45) received a 4200-μg dose of NN1177, following administration of a Cooperstown 5 + 1 index cocktail. Safety, tolerability, pharmacokinetic and pharmacodynamic endpoints were assessed.
Results
For the FHD/SAD and MAD trials, baseline characteristics were generally balanced across treatment cohorts. The geometric mean half-life of NN1177 at steady state was estimated at between 77 and 111 h, and clinically relevant weight loss was achieved (up to 12.6% at week 12; 4200 μg in the MAD trial). Although NN1177 appeared tolerable across trials, several unexpected treatment-related safety signals were observed; increased heart rate, decreased reticulocyte count, increased markers of inflammation (fibrinogen and C-reactive protein), increased aspartate and alanine aminotransferase, impaired glucose tolerance and reduced blood levels of some amino acids.
Conclusion
Although treatment with NN1177 was associated with dose-dependent and clinically relevant weight loss, the observed safety signals precluded further clinical development.
- Abstract
Deletion of Ascl1 in pancreatic β-cells improves insulin secretion, promotes parasympathetic innervation, and attenuates dedifferentiation during metabolic stress
Objective
ASCL1, a pioneer transcription factor, is essential for neural cell differentiation and function. Previous studies have shown that Ascl1 expression is increased in pancreatic β-cells lacking functional KATP channels or after feeding of a high fat diet (HFD) suggesting that it may contribute to the metabolic stress response of β-cells.
Methods
We generated β-cell-specific Ascl1 knockout mice (Ascl1βKO) and assessed their glucose homeostasis, islet morphology and gene expression after feeding either a normal diet or HFD for 12 weeks, or in combination with a genetic disruption of Abcc8, an essential KATP channel component.
Results
Ascl1 expression is increased in response to both a HFD and membrane depolarization and requires CREB-dependent Ca2+ signaling. No differences in glucose homeostasis or islet morphology were observed in Ascl1βKO mice fed a normal diet or in the absence of KATP channels. However, male Ascl1βKO mice fed a HFD exhibited decreased blood glucose levels, improved glucose tolerance, and increased β-cell proliferation. Bulk RNA-seq analysis of islets from Ascl1βKO mice from three studied conditions showed alterations in genes associated with the secretory function. HFD-fed Ascl1βKO mice showed the most extensive changes with increased expression of genes necessary for glucose sensing, insulin secretion and β-cell proliferation, and a decrease in genes associated with β-cell dysfunction, inflammation and dedifferentiation. HFD-fed Ascl1βKO mice also displayed increased expression of parasympathetic neural markers and cholinergic receptors that was accompanied by increased insulin secretion in response to acetylcholine and an increase in islet innervation.
Conclusions
Ascl1 expression is induced by stimuli that cause Ca2+-signaling to the nucleus and contributes in a multifactorial manner to the loss of β-cell function by promoting the expression of genes associated with cellular dedifferentiation, attenuating β-cells proliferation, suppressing acetylcholine sensitivity, and repressing parasympathetic innervation of islets. Thus, the removal of Ascl1 from β-cells improves their function in response to metabolic stress.
- Abstract
High-throughput screening identifies small molecule inhibitors of thioesterase superfamily member 1: Implications for the management of non-alcoholic fatty liver disease
Objective
Thioesterase superfamily member 1 (Them1) is a long chain acyl-CoA thioesterase comprising two N-terminal HotDog fold enzymatic domains linked to a C-terminal lipid-sensing steroidogenic acute regulatory transfer-related (START) domain, which allosterically modulates enzymatic activity. Them1 is highly expressed in thermogenic adipose tissue, where it functions to suppress energy expenditure by limiting rates of fatty acid oxidation, and is induced markedly in liver in response to high fat feeding, where it suppresses fatty acid oxidation and promotes glucose production. Them1−/− mice are protected against non-alcoholic fatty liver disease (NAFLD), suggesting Them1 as a therapeutic target.
Methods
A high-throughput small molecule screen was performed to identify promising inhibitors targeting the fatty acyl-CoA thioesterase activity of purified recombinant Them1.Counter screening was used to determine specificity for Them1 relative to other acyl-CoA thioesterase isoforms. Inhibitor binding and enzyme inhibition were quantified by biophysical and biochemical approaches, respectively. Following structure-based optimization, lead compounds were tested in cell culture.
Results
Two lead allosteric inhibitors were identified that selectively inhibited Them1 by binding the START domain. In mouse brown adipocytes, these inhibitors promoted fatty acid oxidation, as evidenced by increased oxygen consumption rates. In mouse hepatocytes, they promoted fatty acid oxidation, but also reduced glucose production.
Conclusion
Them1 inhibitors could prove attractive for the pharmacologic management of NAFLD.
- Abstract
The pseudokinase TRIB3 controls adipocyte lipid homeostasis and proliferation in vitro and in vivo
Objective
In vivo studies in humans and mice have implicated the pseudokinase Tribbles 3 (TRIB3) in various aspects of energy metabolism. Whilst cell-based studies indicate a role for TRIB3 in adipocyte differentiation and function, it is unclear if and how these cellular functions may contribute to overall metabolic health.
Methods
We investigated the metabolic phenotype of whole-body Trib3 knockout (Trib3KO) mice, focusing on adipocyte and adipose tissue functions. In addition, we combined lipidomics, transcriptomics, interactomics and phosphoproteomics analyses to elucidate cell-intrinsic functions of TRIB3 in pre- and mature adipocytes.
Results
Trib3KO mice display increased adiposity, but their insulin sensitivity remains unaltered. Trib3KO adipocytes are smaller and display higher Proliferating Cell Nuclear Antigen (PCNA) levels, indicating potential alterations in either i) proliferation-differentiation balance, ii) impaired expansion after cell division, or iii) an altered balance between lipid storage and release, or a combination thereof. Lipidome analyses suggest TRIB3 involvement in the latter two processes, as triglyceride storage is reduced and membrane composition, which can restrain cellular expansion, is altered. Integrated interactome, phosphoproteome and transcriptome analyses support a role for TRIB3 in all three cellular processes through multiple cellular pathways, including Mitogen Activated Protein Kinase- (MAPK/ERK), Protein Kinase A (PKA)-mediated signaling and Transcription Factor 7 like 2 (TCF7L2) and Beta Catenin-mediated gene expression.
Conclusions
Our findings support TRIB3 playing multiple distinct regulatory roles in the cytoplasm, nucleus and mitochondria, ultimately controlling adipose tissue homeostasis, rather than affecting a single cellular pathway.
- Abstract
Genome-wide meta-analysis of 92 cardiometabolic protein serum levels
Objectives
Global cardiometabolic disease prevalence has grown rapidly over the years, making it the leading cause of death worldwide. Proteins are crucial components in biological pathways dysregulated in disease states. Identifying genetic components that influence circulating protein levels may lead to the discovery of biomarkers for early stages of disease or offer opportunities as therapeutic targets.
Methods
Here, we carry out a genome-wide association study (GWAS) utilising whole genome sequencing data in 3,005 individuals from the HELIC founder populations cohort, across 92 proteins of cardiometabolic relevance.
Results
We report 322 protein quantitative trait loci (pQTL) signals across 92 proteins, of which 76 are located in or near the coding gene (cis-pQTL). We link those association signals with changes in protein expression and cardiometabolic disease risk using colocalisation and Mendelian randomisation (MR) analyses.
Conclusions
The majority of previously unknown signals we describe point to proteins or protein interactions involved in inflammation and immune response, providing genetic evidence for the contributing role of inflammation in cardiometabolic disease processes.
- Abstract
Hepatic sialic acid synthesis modulates glucose homeostasis in both liver and skeletal muscle
Objective
Sialic acid is a terminal monosaccharide of glycans in glycoproteins and glycolipids, and its derivation from glucose is regulated by the rate-limiting enzyme UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE). Although the glycans on key endogenous hepatic proteins governing glucose metabolism are sialylated, how sialic acid synthesis and sialylation in the liver influence glucose homeostasis is unknown. Studies were designed to fill this knowledge gap.
Methods
To decrease the production of sialic acid and sialylation in hepatocytes, a hepatocyte-specific GNE knockdown mouse model was generated, and systemic glucose metabolism, hepatic insulin signaling and glucagon signaling were evaluated in vivo or in primary hepatocytes. Peripheral insulin sensitivity was also assessed. Furthermore, the mechanisms by which sialylation in the liver influences hepatic insulin signaling and glucagon signaling and peripheral insulin sensitivity were identified.
Results
Liver GNE deletion in mice caused an impairment of insulin suppression of hepatic glucose production. This was due to a decrease in the sialylation of hepatic insulin receptors (IR) and a decline in IR abundance due to exaggerated degradation through the Eph receptor B4. Hepatic GNE deficiency also caused a blunting of hepatic glucagon receptor (GCGR) function which was related to a decline in its sialylation and affinity for glucagon. An accompanying upregulation of hepatic FGF21 production caused an enhancement of skeletal muscle glucose disposal that led to an overall increase in glucose tolerance and insulin sensitivity.
Conclusion
These collective observations reveal that hepatic sialic acid synthesis and sialylation modulate glucose homeostasis in both the liver and skeletal muscle. By interrogating how hepatic sialic acid synthesis influences glucose control mechanisms in the liver, a new metabolic cycle has been identified in which a key constituent of glycans generated from glucose modulates the systemic control of its precursor.
- Abstract
Loss of carnitine palmitoyltransferase 1a reduces docosahexaenoic acid-containing phospholipids and drives sexually dimorphic liver disease in mice
Background and aims
Genome and epigenome wide association studies identified variants in carnitine palmitoyltransferase 1a (CPT1a) that associate with lipid traits. The goal of this study was to determine the role of liver-specific CPT1a on hepatic lipid metabolism.
Approach and results
Male and female liver-specific knockout (LKO) and littermate controls were placed on a low-fat or high-fat diet (60% kcal fat) for 15 weeks. Mice were necropsied after a 16 h fast, and tissues were collected for lipidomics, matrix-assisted laser desorption ionization mass spectrometry imaging, kinome analysis, RNA-sequencing, and protein expression by immunoblotting. Female LKO mice had increased serum alanine aminotransferase levels which were associated with greater deposition of hepatic lipids, while male mice were not affected by CPT1a deletion relative to male control mice. Mice with CPT1a deletion had reductions in DHA-containing phospholipids at the expense of monounsaturated fatty acids (MUFA)-containing phospholipids in whole liver and at the level of the lipid droplet (LD). Male and female LKO mice increased RNA levels of genes involved in LD lipolysis (Plin2, Cidec, G0S2) and in polyunsaturated fatty acid metabolism (Elovl5, Fads1, Elovl2), while only female LKO mice increased genes involved in inflammation (Ly6d, Mmp12, Cxcl2). Kinase profiling showed decreased protein kinase A activity, which coincided with increased PLIN2, PLIN5, and G0S2 protein levels and decreased triglyceride hydrolysis in LKO mice.
Conclusions
Liver-specific deletion of CPT1a promotes sexually dimorphic steatotic liver disease (SLD) in mice, and here we have identified new mechanisms by which females are protected from HFD-induced liver injury.
- Abstract
Physical exercise elicits UPRmt in the skeletal muscle: The role of c-Jun N-terminal kinase
Objective
The mitochondrial unfolded protein response (UPRmt) is an adaptive cellular response to stress to ensure mitochondrial proteostasis and function. Here we explore the capacity of physical exercise to induce UPRmt in the skeletal muscle.
Methods
Therefore, we combined mouse models of exercise (swimming and treadmill running), pharmacological intervention, and bioinformatics analyses.
Results
Firstly, RNA sequencing and Western blotting analysis revealed that an acute aerobic session stimulated several mitostress-related genes and protein content in muscle, including the UPRmt markers. Conversely, using a large panel of isogenic strains of BXD mice, we identified that BXD73a and 73b strains displayed low levels of several UPRmt-related genes in the skeletal muscle, and this genotypic feature was accompanied by body weight gain, lower locomotor activity, and aerobic capacity. Finally, we identified that c-Jun N-terminal kinase (JNK) activation was critical in exercise-induced UPRmt in the skeletal muscle since pharmacological JNK pathway inhibition blunted exercise-induced UPRmt markers in mice muscle.
Conclusion
Our findings provide new insights into how exercise triggers mitostress signals toward the oxidative capacity in the skeletal muscle.
- Abstract
Sympathetic overdrive and unrestrained adipose lipolysis drive alcohol-induced hepatic steatosis in rodents
Objective
Hepatic steatosis is a key initiating event in the pathogenesis of alcohol-associated liver disease (ALD), the most detrimental organ damage resulting from alcohol use disorder. However, the mechanisms by which alcohol induces steatosis remain incompletely understood. We have previously found that alcohol binging impairs brain insulin action, resulting in increased adipose tissue lipolysis by unrestraining sympathetic nervous system (SNS) outflow. Here, we examined whether an impaired brain–SNS–adipose tissue axis drives hepatic steatosis through unrestrained adipose tissue lipolysis and increased lipid flux to the liver.
Methods
We examined the role of lipolysis, and the brain–SNS–adipose tissue axis and stress in alcohol induced hepatic triglyceride accumulation in a series of rodent models: pharmacological inhibition of the negative regulator of insulin signaling protein-tyrosine phosphatase 1β (PTP1b) in the rat brain, tyrosine hydroxylase (TH) knockout mice as a pharmacogenetic model of sympathectomy, adipocyte specific adipose triglyceride lipase (ATGL) knockout mice, wildtype (WT) mice treated with β3 adrenergic agonist or undergoing restraint stress.
Results
Intracerebral administration of a PTP1b inhibitor, inhibition of adipose tissue lipolysis and reduction of sympathetic outflow ameliorated alcohol induced steatosis. Conversely, induction of adipose tissue lipolysis through β3 adrenergic agonism or by restraint stress worsened alcohol induced steatosis.
Conclusions
Brain insulin resistance through upregulation of PTP1b, increased sympathetic activity, and unrestrained adipose tissue lipolysis are key drivers of alcoholic steatosis. Targeting these drivers of steatosis may provide effective therapeutic strategies to ameliorate ALD.
- Abstract
ERRα fosters running endurance by driving myofiber aerobic transformation and fuel efficiency
Objective
Estrogen related receptor α (ERRα) occupies a central node in the transcriptional control of energy metabolism, including in skeletal muscle, but whether modulation of its activity can directly contribute to extend endurance to exercise remains to be investigated. The goal of this study was to characterize the benefit of mice engineered to express a physiologically relevant activated form of ERRα on skeletal muscle exercise metabolism and performance.
Methods
We recently shown that mutational inactivation of three regulated phosphosites in the amino terminal domain of the nuclear receptor ERRα impedes its degradation, leading to an accumulation of ERRα proteins and perturbation of metabolic homeostasis in ERRα3SA mutant mice. Herein, we used a multi-omics approach in combination with physical endurance tests to ascertain the consequences of expressing the constitutively active phospho-deficient ERRα3SA form on muscle exercise performance and energy metabolism.
Results
Genetic heightening of ERRα activity enhanced exercise capacity, fatigue-resistance, and endurance. This phenotype resulted from extensive reprogramming of ERRα global DNA occupancy and transcriptome in muscle leading to an increase in oxidative fibers, mitochondrial biogenesis, fatty acid oxidation, and lactate homeostasis.
- Abstract
Protective roles of adiponectin and molecular signatures of HNF4α and PPARα as downstream targets of adiponectin in pancreatic β cells
The disease progression of the metabolic syndrome is associated with prolonged hyperlipidemia and insulin resistance, eventually giving rise to impaired insulin secretion, often concomitant with hypoadiponectinemia. As an adipose tissue derived hormone, adiponectin is beneficial for insulin secretion and β cell health and differentiation. However, the down-stream pathway of adiponectin in the pancreatic islets has not been studied extensively. Here, along with the overall reduction of endocrine pancreatic function in islets from adiponectin KO mice, we examine PPARα and HNF4α as additional down-regulated transcription factors during a prolonged metabolic challenge. To elucidate the function of β cell-specific PPARα and HNF4α expression, we developed doxycycline inducible pancreatic β cell-specific PPARα (β-PPARα) and HNF4α (β-HNF4α) overexpression mice. β-PPARα mice exhibited improved protection from lipotoxicity, but elevated β-oxidative damage in the islets, and also displayed lowered phospholipid levels and impaired glucose-stimulated insulin secretion. β-HNF4α mice showed a more severe phenotype when compared to β-PPARα mice, characterized by lower body weight, small islet mass and impaired insulin secretion. RNA-sequencing of the islets of these models highlights overlapping yet unique roles of β-PPARα and β-HNF4α. Given that β-HNF4α potently induces PPARα expression, we define a novel adiponectin-HNF4α-PPARα cascade. We further analyzed downstream genes consistently regulated by this axis. Among them, the islet amyloid polypeptide (IAPP) gene is an important target and accumulates in adiponectin KO mice. We propose a new mechanism of IAPP aggregation in type 2 diabetes through reduced adiponectin action.
- Abstract
ABHD6 suppression promotes anti-inflammatory polarization of adipose tissue macrophages via 2-monoacylglycerol/PPAR signaling in obese mice
Objective
Pro-inflammatory polarization of adipose tissue macrophages (ATMs) plays a critical role in the pathogenesis of obesity-associated chronic inflammation. However, little is known about the role of lipids in the regulation of ATMs polarity and inflammation in response to metabolic stress. Deletion of α/β-hydrolase domain-containing 6 (ABHD6), a monoacylglycerol (MAG) hydrolase, has been shown to protect against diet-induced obesity and insulin resistance.
Methods
Here we investigated the immunometabolic role of macrophage ABHD6 in response to nutrient excess using whole-body ABHD6-KO mice and human and murine macrophage cell-lines treated with KT203, a selective and potent pharmacological ABHD6 inhibitor.
Results
KO mice on high-fat diet showed lower susceptibility to systemic diet-induced inflammation. Moreover, in the setting of overnutrition, stromal vascular cells from gonadal fat of KO vs. control mice contained lower number of M1 macrophages and exhibited enhanced levels of metabolically activated macrophages (MMe) and M2 markers, oxygen consumption, and interleukin-6 (IL-6) release. Likewise, under in vitro nutri-stress condition, inhibition of ABHD6 in MMe-polarized macrophages attenuated the expression and release of pro-inflammatory cytokines and M1 markers and induced the upregulation of lipid metabolism genes. ABHD6-inhibited MMe macrophages showed elevated levels of peroxisome proliferator-activated receptors (PPARs) and 2-MAG species. Notably, among different MAG species, only 2-MAG treatment led to increased levels of PPAR target genes in MMe macrophages.
Conclusions
Collectively, our findings identify ABHD6 as a key component of pro-inflammatory macrophage activation in response to excess nutrition and implicate an endogenous macrophage lipolysis/ABHD6/2-MAG/PPARs cascade, as a lipid signaling and immunometabolic pathway, which favors the anti-inflammatory polarization of ATMs in obesity.
- Abstract
Changes in liver metabolic pathways demonstrate efficacy of the combined dietary and microbial therapeutic intervention in MASLD mouse model
Objective
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), is the most prevalent liver disease globally, yet no therapies are approved. The effects of Escherichia coli Nissle 1917 expressing aldafermin, an engineered analog of the intestinal hormone FGF19, in combination with dietary change were investigated as a potential treatment for MASLD.
Methods
MASLD was induced in C57BL/6J male mice by American lifestyle-induced obesity syndrome diet and then switched to a standard chow diet for seven weeks. In addition to the dietary change, the intervention group received genetically engineered E. coli Nissle expressing aldafermin, while control groups received either E. coli Nissle vehicle or no treatment. MASLD-related plasma biomarkers were measured using an automated clinical chemistry analyzer. The liver steatosis was assessed by histology and bioimaging analysis using Fiji (ImageJ) software. The effects of the intervention in the liver were also evaluated by RNA sequencing and liquid-chromatography-based non-targeted metabolomics analysis. Pathway enrichment studies were conducted by integrating the differentially expressed genes from the transcriptomics findings with the metabolites from the metabolomics results using Ingenuity pathway analysis.
Results
After the intervention, E. coli Nissle expressing aldafermin along with dietary changes reduced body weight, liver steatosis, plasma aspartate aminotransferase, and plasma cholesterol levels compared to the two control groups. The integration of transcriptomics with non-targeted metabolomics analysis revealed the downregulation of amino acid metabolism and related receptor signaling pathways potentially implicated in the reduction of hepatic steatosis and insulin resistance. Moreover, the downregulation of pathways linked to lipid metabolism and changes in amino acid-related pathways suggested an overall reduction of oxidative stress in the liver.
Conclusions
These data support the potential for using engineered microbial therapeutics in combination with dietary changes for managing MASLD.
- Abstract
CTRP13 ablation improves systemic glucose and lipid metabolism
Objective
Tissue crosstalk mediated by secreted hormones underlies the integrative control of metabolism. We previously showed that CTRP13/C1QL3, a secreted protein of the C1q family, can improve glucose metabolism and insulin action in vitro and reduce food intake and body weight in mice when centrally delivered. A role for CTRP13 in regulating insulin secretion in isolated islets has also been demonstrated. It remains unclear, however, whether the effects of CTRP13 on cultured cells and in mice reflect the physiological function of the protein. Here, we use a loss-of-function mouse model to address whether CTRP13 is required for metabolic homeostasis.
Methods
WT and Ctrp13 knockout (KO) mice fed a standard chow or a high-fat diet were subjected to comprehensive metabolic phenotyping. Transcriptomic analyses were carried out on visceral and subcutaneous fat, liver, and skeletal muscle to identify pathways altered by CTRP13 deficiency. RNA-seq data was further integrated with the Metabolic Syndrome in Man (METSIM) cohort data. Adjusted regression analysis was used to demonstrate that genetic variation of CTRP13 expression accounts for a significant proportion of variance between differentially expressed genes (DEGs) in adipose tissue and metabolic traits in humans.
Results
Contrary to expectation, chow-fed Ctrp13-KO male mice had elevated physical activity, lower body weight, and improved lipid handling. On a high-fat diet (HFD), Ctrp13-KO mice of either sex were consistently more active and leaner. Loss of CTRP13 reduced hepatic glucose output and improved glucose tolerance, insulin sensitivity, and triglyceride clearance, though with notable sex differences. Consistent with the lean phenotype, transcriptomic analyses revealed a lower inflammatory profile in visceral fat and liver. Reduced hepatic steatosis was correlated with the suppression of lipid synthesis and enhanced lipid catabolism gene expression. Visceral fat had the largest number of DEGs and mediation analyses on the human orthologs of the DEGs suggested the potential causal contribution of CTRP13 to human metabolic syndrome.
Conclusions
Our results suggest that CTRP13 is a negative metabolic regulator, and its deficiency improves systemic metabolic profiles. Our data also suggest the reduction in circulating human CTRP13 levels seen in obesity and diabetes may reflect a compensatory physiologic response to counteract insulin resistance.
- Abstract
FoxK1 associated gene regulatory network in hepatic insulin action and its relationship to FoxO1 and insulin receptor mediated transcriptional regulation
Objective
Insulin acts on the liver via changes in gene expression to maintain glucose and lipid homeostasis. This study aimed to the Forkhead box protein K1 (FOXK1) associated gene regulatory network as a transcriptional regulator of hepatic insulin action and to determine its role versus FoxO1 and possible actions of the insulin receptor at the DNA level.
Methods
Genome-wide analysis of FoxK1 binding were studied by chromatin immunoprecipitation sequencing and compared to those for IR and FoxO1. These were validated by knockdown experiments and gene expression analysis.
Results
Chromatin immunoprecipitation (ChIP) sequencing shows that FoxK1 binds to the proximal promoters and enhancers of over 4000 genes, and insulin enhances this interaction for about 75% of them. These include genes involved in cell cycle, senescence, steroid biosynthesis, autophagy, and metabolic regulation, including glucose metabolism and mitochondrial function and are enriched in a TGTTTAC consensus motif. Some of these genes are also bound by FoxO1. Comparing this FoxK1 ChIP-seq data to that of the insulin receptor (IR) reveals that FoxK1 may act as the transcription factor partner for some of the previously reported roles of IR in gene regulation, including for LARS1 and TIMM22, which are involved in rRNA processing and cell cycle.
Conclusion
These data demonstrate that FoxK1 is an important regulator of gene expression in response to insulin in liver and may act in concert with FoxO1 and IR in regulation of genes in metabolism and other important biological pathways.
- Abstract
Spatiotemporal regulation of GIPR signaling impacts glucose homeostasis as revealed in studies of a common GIPR variant
Objective
Glucose-dependent insulinotropic polypeptide (GIP) has a role in controlling postprandial metabolic tone. In humans, a GIP receptor (GIPR) variant (Q354, rs1800437) is associated with a lower body mass index (BMI) and increased risk for Type 2 Diabetes. To better understand the impacts of GIPR-Q354 on metabolism, it is necessary to study it in an isogeneic background to the predominant GIPR isoform, E354. To accomplish this objective, we used CRISPR-CAS9 editing to generate mouse models of GIPR-Q354 and GIPR-E354. Here we characterize the metabolic effects of GIPR-Q354 variant in a mouse model (GIPR-Q350).
Methods
We generated the GIPR-Q350 mice for in vivo studies of metabolic impact of the variant. We isolated pancreatic islets from GIPR-Q350 mice to study insulin secretion ex vivo. We used a β−cell cell line to understand the impact of the GIPR-Q354 variant on the receptor traffic.
Results
We found that female GIPR-Q350 mice are leaner than littermate controls, and male GIPR-Q350 mice are resistant to diet-induced obesity, in line with the association of the variant with reduced BMI in humans. GIPR-Q350 mice of both sexes are more glucose tolerant and exhibit an increased sensitivity to GIP. Postprandial GIP levels are reduced in GIPR-Q350 mice, revealing feedback regulation that balances the increased sensitivity of GIP target tissues to secretion of GIP from intestinal endocrine cells. The increased GIP sensitivity is recapitulated ex vivo during glucose stimulated insulin secretion assays in islets. Generation of cAMP in islets downstream of GIPR activation is not affected by the Q354 substitution. However, post-activation traffic of GIPR-Q354 variant in β-cells is altered, characterized by enhanced intracellular dwell time and increased localization to the Trans-Golgi Network (TGN).
Conclusions
Our data link altered intracellular traffic of the GIPR-Q354 variant with GIP control of metabolism. We propose that this change in spatiotemporal signaling underlies the physiologic effects of GIPR-Q350/4 and GIPR-E350/4 in mice and humans. These findings contribute to a more complete understanding of the impact of GIPR-Q354 variant on glucose homeostasis that could perhaps be leveraged to enhance pharmacologic targeting of GIPR for the treatment of metabolic disease.
- Abstract
AgRP neuron activity promotes associations between sensory and nutritive signals to guide flavor preference
Objective
The learned associations between sensory cues (e.g., taste, smell) and nutritive value (e.g., calories, post-ingestive signaling) of foods powerfully influences our eating behavior [1], but the neural circuits that mediate these associations are not well understood. Here, we examined the role of agouti-related protein (AgRP)-expressing neurons – neurons which are critical drivers of feeding behavior [2; 3] – in mediating flavor-nutrient learning (FNL).
Methods
Because mice prefer flavors associated with AgRP neuron activity suppression [4], we examined how optogenetic stimulation of AgRP neurons during intake influences FNL, and used fiber photometry to determine how endogenous AgRP neuron activity tracks associations between flavors and nutrients.
Results
We unexpectedly found that tonic activity in AgRP neurons during FNL potentiated, rather than prevented, the development of flavor preferences. There were notable sex differences in the mechanisms for this potentiation. Specifically, in male mice, AgRP neuron activity increased flavor consumption during FNL training, thereby strengthening the association between flavors and nutrients. In female mice, AgRP neuron activity enhanced flavor-nutrient preferences independently of consumption during training, suggesting that AgRP neuron activity enhances the reward value of the nutrient-paired flavor. Finally, in vivo neural activity analyses demonstrated that acute AgRP neuron dynamics track the association between flavors and nutrients in both sexes.
Conclusions
Overall, these data (1) demonstrate that AgRP neuron activity enhances associations between flavors and nutrients in a sex-dependent manner and (2) reveal that AgRP neurons track and rapidly update these associations. Taken together, our findings provide new insight into the role of AgRP neurons in assimilating sensory and nutritive signals for food reinforcement.
- Abstract
High-fat diet feeding disrupts the coupling of thermoregulation to energy homeostasis
Objective
Preserving core body temperature across a wide range of ambient temperatures requires adaptive changes of thermogenesis that must be offset by corresponding changes of energy intake if body fat stores are also to be preserved. Among neurons implicated in the integration of thermoregulation with energy homeostasis are those that express both neuropeptide Y (NPY) and agouti-related protein (AgRP) (referred to herein as AgRP neurons). Specifically, cold-induced activation of AgRP neurons was recently shown to be required for cold exposure to increase food intake in mice. Here, we investigated how consuming a high-fat diet (HFD) impacts various adaptive responses to cold exposure as well as the responsiveness of AgRP neurons to cold.
Methods
To test this, we used immunohistochemistry, in vivo fiber photometry and indirect calorimetry for continuous measures of core temperature, energy expenditure, and energy intake in both chow- and HFD-fed mice housed at different ambient temperatures.
Results
We show that while both core temperature and the thermogenic response to cold are maintained normally in HFD-fed mice, the increase of energy intake needed to preserve body fat stores is blunted, resulting in weight loss. Using both immunohistochemistry and in vivo fiber photometry, we show that although cold-induced AgRP neuron activation is detected regardless of diet, the number of cold-responsive neurons appears to be blunted in HFD-fed mice.
Conclusions
We conclude that HFD-feeding disrupts the integration of systems governing thermoregulation and energy homeostasis that protect body fat mass during cold exposure.
- Abstract
IL-6/JAK2-dependent G6PD phosphorylation promotes nucleotide synthesis and supports tumor growth
Objective
Tumor cells hijack inflammatory mechanisms to promote their own growth. IL-6 is one of the major cytokines, and is frequently upregulated in tumors. The pentose phosphate pathway (PPP) generates the indispensable building blocks to produce various nucleotides. Here we aimed to determine whether and how PPP is timely tuned in response to IL-6 to support tumor growth.
Methods
Protein expression was examined by immunoblot. Protein interaction was examined by immunoprecipitation. Tumor cell proliferation in in vitro culture was examined by BrdU assay and colony formation assay. Tumor cell proliferation in mouse xenograft model was examined by Ki-67 staining.
Results
Here we show that the metabolic flux of PPP and enzymatic activity of glucose-6-phosphate dehydrogenase (G6PD) is rapidly induced under IL-6 treatment, without obvious changes in G6PD expression level. Mechanistically, Janus kinase 2 (JAK2) phosphorylates G6PD Y437 under IL-6 treatment, which accentuates G6PD enzymatic activity by promoting G6PD binding with its substrate G6P. Further, JAK2-dependent G6PD Y437 phosphorylation is required for IL-6-induced nucleotide biosynthesis and tumor cell proliferation, and is associated with the progression of oral squamous cell carcinoma.
Conclusions
Our findings report a new mechanism implicated in the crosstalk between tumor cells and inflammatory microenvironment, by which JAK2-dependent activation of G6PD governs nucleotide synthesis to support tumor cell proliferation, thereby highlighting its value as a potential anti-tumor target.
- Abstract
Let-7 suppresses liver fibrosis by inhibiting hepatocyte apoptosis and TGF-β production
Objective
FAS-mediated apoptosis of hepatocytes and aberrant TGF-β signaling are major drivers of liver fibrosis. Decreased miRNA let-7 expression in the livers of patients and animals with fibrosis suggests a mechanistic link of let-7 to hepatic fibrogenesis.
Methods
Using transient transfection we tested the effects of let-7 overexpression and TET3 siRNA knockdown on FAS and TGF-β1 expression and FAS-mediated apoptosis in human and mouse primary hepatocytes. We assessed the therapeutic activity of let-7 miRNA delivered via adeno-associated viral vectors in mouse models of carbon tetrachloride (CCl4)-induced and bile duct ligation (BDL)-induced liver fibrosis.
Results
Let-7 decreased TGF-β1 production from hepatocytes through a negative feedback loop involving TET3. On the other hand, let-7 post-transcriptionally inhibits FAS expression, thereby suppressing hepatocyte apoptosis. Hepatic-specific delivery of let-7 miRNA mitigated liver fibrosis in both CCl4 and BDL mouse models.
Conclusions
Let-7 is a crucial node in the signaling networks that govern liver fibrosis progression. Let-7 and/or its derivatives may be used as therapeutic agents for liver fibrosis.