Cover Story
Evolutionary forces have wired our brains to prefer and consume energy-dense foods to aid in our survival. While effective during periods of limited access, the ubiquitous nature of high-fat food sources in society leads to obesity and numerous related health complications. Exacerbating this drive to consume more energy-dense, palatable foods is a devaluation of less appetitive, nutritionally-balanced foods. While this preference for calorically-rich foods is well known, significant gaps exist in our understanding of how this develops and leads to devaluation.
Laboratory mice are typically provided with ad libitum access to a well-balanced standard chow diet (SD) in which the macronutrient composition has been formulated for optimal growth. Introduction to ad libitum high fat diet (HFD), but not a high-sucrose diet, leads to rapid weight gain, at least in part due to excessive caloric intake. Interestingly, when mice are given a choice between ad libitum access to both SD and HFD, they strongly prefer consumption of the latter at the expense of the former. While this predilection for HFD over SD during prolonged exposure is well described, how rapidly this transition occurs under physiological or artificial hunger is less known. Removal of HFD from mice given the choice between HFD and SD, akin to a strict human diet, results in rapid weight loss due to the self-restricted consumption of SD. Additionally, mice fed a HFD will forgo SD consumption even in states of physiological or artificially-induced caloric deprivation. While this SD devaluation is robustly conserved between sex and subject and independent of fat mass accrual, the causative nature of this phenomenon is not well understood.
All Articles
- Abstract
The GLP-1 medicines semaglutide and tirzepatide do not alter disease-related pathology, behaviour or cognitive function in 5XFAD and APP/PS1 mice
Objective
The development of glucagon-like peptide-1 receptor (GLP-1R) agonists for the treatment of type 2 diabetes and obesity has been accompanied by evidence for anti-inflammatory and cytoprotective actions in the heart, blood vessels, kidney, and brain. Whether GLP-1R agonists might be useful clinically for attenuating deterioration of cognitive dysfunction and reducing the progression of Alzheimer's disease remains uncertain.
Methods
Here we evaluated the actions of semaglutide and tirzepatide, clinically distinct GLP-1 medicines, in two mouse models of neurodegeneration.
Results
Semaglutide reduced body weight and improved glucose tolerance in 12-month-old male and female 5XFAD and APP/PS1 mice, consistent with pharmacological engagement of the GLP-1R. Nevertheless, amyloid plaque density was not different in the cerebral cortex, hippocampus, or subiculum of semaglutide-treated 12-month-old 5XFAD and APP/PS1 mice. IBA1 and GFAP expression were increased in the hippocampus of 5XFAD and APP/PS1 mice but were not reduced by semaglutide. Moreover, parameters of neurobehavioral and cognitive function evaluated using Open Field testing or the Morris water maze were not improved following treatment with semaglutide. To explore whether incretin therapies might be more effective in younger mice, we studied semaglutide and tirzepatide action in 6-month-old male and female 5XFAD mice. Neither semaglutide nor tirzepatide modified the extent of plaque accumulation, hippocampal IBA1+ or GFAP+ cells, or parameters of neurobehavioral testing, despite improving glucose tolerance and reducing body weight. mRNA biomarkers of inflammation and neurodegeneration were increased in the hippocampus of male and female 5XFAD mice but were not reduced after treatment with semaglutide or tirzepatide.
Conclusions
Collectively, these findings reveal preservation of the metabolic actions of two GLP-1 medicines, semaglutide and tirzepatide, yet inability to detect improvement in structural and functional parameters of neurodegeneration in two mouse models of Alzheimer's disease.
- Abstract
Loss of mitochondria long-chain fatty acid oxidation impairs skeletal muscle contractility by disrupting myofibril structure and calcium homeostasis
Objective
Abnormal lipid metabolism in mammalian tissues can be highly deleterious, leading to organ failure. Carnitine Palmitoyltransferase 2 (CPT2) deficiency is an inherited metabolic disorder affecting the liver, heart, and skeletal muscle due to impaired mitochondrial oxidation of long-chain fatty acids (mLCFAO) for energy production.
Methods
However, the basis of tissue damage in mLCFAO disorders is not fully understood. Mice lacking CPT2 in skeletal muscle (Cpt2Sk−/−) were generated to investigate the nexus between mFAO deficiency and myopathy.
Results
Compared to controls, ex-vivo contractile force was reduced by 70% in Cpt2Sk−/− oxidative soleus muscle despite the preserved capacity to couple ATP synthesis to mitochondrial respiration on alternative substrates to long-chain fatty acids. Increased mitochondrial biogenesis, lipid accumulation, and the downregulation of 80% of dystrophin-related and contraction-related proteins severely compromised the structure and function of Cpt2Sk−/− soleus. CPT2 deficiency affected oxidative muscles more than glycolytic ones. Exposing isolated sarcoplasmic reticulum to long-chain acylcarnitines (LCACs) inhibited calcium uptake. In agreement, Cpt2Sk−/− soleus had decreased calcium uptake and significant accumulation of palmitoyl-carnitine, suggesting that LCACs and calcium dyshomeostasis are linked in skeletal muscle.
Conclusions
Our data demonstrate that loss of CPT2 and mLCFAO compromise muscle structure and function due to excessive mitochondrial biogenesis, downregulation of the contractile proteome, and disruption of calcium homeostasis.
- Abstract
Renal L-2-hydroxyglutarate dehydrogenase activity promotes hypoxia tolerance and mitochondrial metabolism in Drosophila melanogaster
Objectives
The mitochondrial enzyme L-2-hydroxyglutarate dehydrogenase (L2HGDH) regulates the abundance of L-2-hydroxyglutarate (L-2HG), a potent signaling metabolite capable of influencing chromatin architecture, mitochondrial metabolism, and cell fate decisions. Loss of L2hgdh activity in humans induces ectopic L-2HG accumulation, resulting in neurodevelopmental defects, altered immune cell function, and enhanced growth of clear cell renal cell carcinomas. To better understand the molecular mechanisms that underlie these disease pathologies, we used the fruit fly Drosophila melanogaster to investigate the endogenous functions of L2hgdh.
Methods
L2hgdh mutant adult male flies were analyzed under normoxic and hypoxic conditions using a combination of semi-targeted metabolomics and RNA-seq. These multi-omic analyses were complemented by tissue-specific genetic studies that examined the effects of L2hgdh mutations on the Drosophila renal system (Malpighian tubules; MTs).
Results
Our studies revealed that while L2hgdh is not essential for growth or viability under standard culture conditions, L2hgdh mutants are hypersensitive to hypoxia and expire during the reoxygenation phase with severe disruptions of mitochondrial metabolism. Moreover, we find that the fly renal system is a key site of L2hgdh activity, as L2hgdh mutants that express a rescuing transgene within the MTs survive hypoxia treatment and exhibit normal levels of mitochondrial metabolites. We also demonstrate that even under normoxic conditions, L2hgdh mutant MTs experience significant metabolic stress and are sensitized to aberrant growth upon Egfr activation.
Conclusions
These findings present a model in which renal L2hgdh activity limits systemic L-2HG accumulation, thus indirectly regulating the balance between glycolytic and mitochondrial metabolism, enabling successful recovery from hypoxia exposure, and ensuring renal tissue integrity.
- Abstract
Dietary fat content and absorption shape standard diet devaluation through hunger circuits
Objective
Exposure to 60% high fat diet (HFD) leads to a robust consummatory preference over well-balanced chow standard diet (SD) when mice are presented with a choice. This passive HFD-induced SD devaluation following HFD challenge and withdrawal is highlighted by the significant reduction in SD food intake even in states of caloric deprivation. The elements of HFD that lead to this SD depreciation remains unclear. Possibly important factors include the amount and type of fat contained in a diet as well as past eating experiences dependent on sensory properties including taste and post ingestive feedback. We aimed to explore the role of these components to HFD-induced SD devaluation.
Methods
Wildtype mice were longitudinally presented discrete HFDs in conjunction with SD and feeding and metabolic parameters were analyzed. A separate cohort of animals were assessed for acute HFD preference in 3 conditions: 1) ad libitum fed (sated), 2) overnight fasted (physiologically hungry), and 3) ad libitum fed (artificially hungry), elicited through chemogenetic Agouti-related peptide (AgRP) neuron activation. Population dynamics of AgRP neurons were recorded to distinct inaccessible and accessible diets both before and after consummatory experience. Transient receptor potential channel type M5 (TRPM5) knockout mice were used to investigate the role of fat taste perception and preference to HFD-induced SD devaluation. The clinically approved lipase inhibitor orlistat was used to test the contribution of fat absorption to HFD-induced SD devaluation.
Results
HFD-induced SD devaluation is dependent on fat content, composition, and preference. This effect scaled both in strength and latency with higher percentages of animal fat. 60% HFD was preferred and almost exclusively consumed in preference to other diets across hours and days, but this was not as evident upon initial introduction over seconds and minutes, suggesting ingestive experience is critical. Optical fiber photometry recordings of AgRP activity supported this notion as neuronal suppression by the different diets was contingent on prior intake. While taste transduced via TRPM5 influenced HFD-evoked weight gain, it failed to impact either HFD preference or HFD-induced SD devaluation. Perturbation of post ingestive feedback through orlistat-mediated diminishment of fat absorption prevented HFD-evoked weight gain and abolished HFD-induced SD devaluation.
Conclusions
Post ingestive feedback via fat digestion is vital for expression of HFD-induced SD devaluation.
- Abstract
Polyribonucleotide nucleotidyltransferase 1 participates in metabolic-associated fatty liver disease pathogenesis by affecting lipid metabolism and mitochondrial homeostasis
Objective
Metabolic-associated fatty liver disease (MAFLD) represents one of the most prevalent chronic liver conditions worldwide, but its precise pathogenesis remains unclear. This research endeavors to elucidate the involvement and molecular mechanisms of polyribonucleotide nucleotidyltransferase 1 (PNPT1) in the progression of MAFLD.
Methods
The study employed western blot and qRT-PCR to evaluate PNPT1 levels in liver specimens from individuals diagnosed with MAFLD and in mouse models subjected to a high-fat diet. Cellular studies investigated the effects of PNPT1 on lipid metabolism, apoptosis, and mitochondrial stability in hepatocytes. Immunofluorescence was utilized to track the subcellular movement of PNPT1 under high lipid conditions. RNA immunoprecipitation and functional assays were conducted to identify interactions between PNPT1 and Mcl-1 mRNA. The role of PPARα as an upstream transcriptional regulator of PNPT1 was investigated. Recombinant adenoviral vectors were utilized to modulate PNPT1 expression in vivo.
Results
PNPT1 was found to be markedly reduced in liver tissues from MAFLD patients and HFD mice. In vitro, PNPT1 directly regulated hepatic lipid metabolism, apoptosis, and mitochondrial stability. Under conditions of elevated lipids, PNPT1 relocated from mitochondria to cytoplasm, modifying its physiological functions. RNA immunoprecipitation revealed that the KH and S1 domains of PNPT1 bind to and degrade Mcl-1 mRNA, which in turn affects mitochondrial permeability. The transcriptional regulator PPARα was identified as a significant influencer of PNPT1, impacting both its expression and subsequent cellular functions. Alterations in PNPT1 expression were directly correlated with the progression of MAFLD in mice.
Conclusions
The study confirms the pivotal function of PNPT1 in the development of MAFLD through its interactions with Mcl-1 and its regulatory effects on lipid metabolism and mitochondrial stability. These insights highlight the intricate association between PNPT1 and MAFLD, shedding light on its molecular pathways and presenting a potential new therapeutic avenue for MAFLD management.
- Abstract
Arginine deprivation/citrulline augmentation with ADI-PEG20 as novel therapy for complications in type 2 diabetes
Objective
Chronic inflammation and oxidative stress mediate the pathological progression of diabetic complications, like diabetic retinopathy (DR), peripheral neuropathy (DPN) and impaired wound healing. Studies have shown that treatment with a stable form of arginase 1 that reduces l-arginine levels and increases ornithine and urea limits retinal injury and improves visual function in DR. We tested the therapeutic efficacy of PEGylated arginine deiminase (ADI-PEG20) that depletes l-arginine and elevates l-citrulline on diabetic complications in the db/db mouse model of type 2 diabetes (T2D).
Methods
Mice received intraperitoneal (IP), intramuscular (IM), or intravitreal (IVT) injections of ADI-PEG20 or PEG20 as control. Effects on body weight, fasting blood glucose levels, blood-retinal-barrier (BRB) function, visual acuity, contrast sensitivity, thermal sensitivity, and wound healing were determined. Studies using bone marrow-derived macrophages (BMDM) examined the underlying signaling pathway.
Results
Systemic injections of ADI-PEG20 reduced body weight and blood glucose and decreased oxidative stress and inflammation in db/db retinas. These changes were associated with improved BRB and visual function along with thermal sensitivity and wound healing. IVT injections of either ADI-PEG20, anti-VEGF antibody or their combination also improved BRB and visual function. ADI-PEG20 treatment also prevented LPS/IFNℽ-induced activation of BMDM in vitro as did depletion of l-arginine and elevation of l-citrulline.
Conclusions/interpretation
ADI-PEG20 treatment limited signs of DR and DPN and enhanced wound healing in db/db mice. Studies using BMDM suggest that the anti-inflammatory effects of ADI-PEG20 involve blockade of the JAK2-STAT1 signaling pathway via l-arginine depletion and l-citrulline production.
- Abstract
Reversing Pdgfrβ signaling restores metabolically active beige adipocytes by alleviating ILC2 suppression in aged and obese mice
Objective
Platelet Derived Growth Factor Receptor Beta (Pdgfrβ) suppresses the formation of cold temperature-induced beige adipocytes in aged mammals. We aimed to determine if deleting Pdgfrβ in aged mice could rejuvenate metabolically active beige adipocytes by activating group 2 innate lymphoid cells (ILC2), and whether this effect could counteract diet-induced obesity-associated beige fat decline.
Methods
We employed Pdgfrβ gain-of-function and loss-of-function mouse models targeting beige adipocyte progenitor cells (APCs). Our approach included cold exposure, metabolic cage analysis, and age and diet-induced obesity models to examine beige fat development and metabolic function under varied Pdgfrβ activity.
Results
Acute cold exposure alone enhanced metabolic benefits in aged mice, irrespective of beige fat generation. However, Pdgfrβ deletion in aged mice reestablished the formation of metabolically functional beige adipocytes, enhancing metabolism. Conversely, constitutive Pdgfrβ activation in young mice stymied beige fat development. Mechanistically, Pdgfrβ deletion upregulated IL-33, promoting ILC2 recruitment and activation, whereas Pdgfrβ activation reduced IL-33 levels and suppressed ILC2 activity. Notably, diet-induced obesity markedly increased Pdgfrβ expression and Stat1 signaling, which inhibited IL-33 induction and ILC2 activation. Genetic deletion of Pdgfrβ restored beige fat formation in obese mice, improving whole-body metabolism.
Conclusions
This study reveals that cold temperature exposure alone can trigger metabolic activation in aged mammals. However, reversing Pdgfrβ signaling in aged and obese mice not only restores beige fat formation but also renews metabolic function and enhances the immunological environment of white adipose tissue (WAT). These findings highlight Pdgfrβ as a crucial target for therapeutic strategies aimed at combating age- and obesity-related metabolic decline.
- Abstract
Hunger signalling in the olfactory bulb primes exploration, food-seeking and peripheral metabolism
Objective
Although the metabolic state of an organism affects olfactory function, the precise mechanisms and their impact on behavior and metabolism remain unknown. Here, we assess whether ghrelin receptors (GHSRs) in the olfactory bulb (OB) increase olfactory function and influence foraging behaviors and metabolism.
Methods
We performed a detailed behavioural and metabolic analysis in mice lacking GHSRs in the OB (OBGHSR deletion). We also analsyed OB scRNA-seq and spatial transcriptomic datasets to assess GHSR+ cells in the main and accessory olfactory bulbs, as well as the anterior olfactory nucleus.
Results
OBGHSR deletion affected olfactory discrimination and habituation to both food and non-food odors. Anxiety-like and depression-like behaviors were significantly greater after OBGHSR deletion, whereas exploratory behavior was reduced, with the greatest effect under fasted conditions. OBGHSR deletion impacted feeding behavior as evidenced by altered bout number and duration, as well as buried food-seeking. OBGHSR deletion increased body weight and fat mass, spared fat utilisation on a chow diet and impaired glucose metabolism indicating metabolic dysfunction. Cross referenced analysis of OB scRNA-seq and spatial transcriptomic datasets revealed GHSR+ glutamate neurons in the main and accessory olfactory bulbs, as well as the anterior olfactory nucleus. Ablation of glutamate neurons in the OB reduced ghrelin-induced food finding and phenocopied results seen after OBGHSR deletion.
Conclusions
OBGHSRs help to maintain olfactory function, particularly during hunger, and facilitate behavioral adaptations that optimise food-seeking in anxiogenic environments, priming metabolic pathways in preparation for food consumption.
- Abstract
The role of intestinal microbiota in physiologic and body compositional changes that accompany CLA-mediated weight loss in obese mice
Objective
Obesity continues to be a major problem, despite known treatment strategies such as lifestyle modifications, pharmaceuticals, and surgical options, necessitating the development of novel weight loss approaches. The naturally occurring fatty acid, 10,12 conjugated linoleic acid (10,12 CLA), promotes weight loss by increasing fat oxidation and browning of white adipose tissue, leading to increased energy expenditure in obese mice. Coincident with weight loss, 10,12 CLA also alters the murine gut microbiota by enriching for microbes that produce short chain fatty acids (SCFAs), with concurrent elevations in fecal butyrate and plasma acetate.
Methods
To determine if the observed microbiota changes are required for 10,12 CLA-mediated weight loss, adult male mice with diet-induced obesity were given broad-spectrum antibiotics (ABX) to perturb the microbiota prior to and during 10,12 CLA-mediated weight loss. Conversely, to determine whether gut microbes were sufficient to induce weight loss, conventionally-raised and germ-free mice were transplanted with cecal contents from mice that had undergone weight loss by 10,12 CLA supplementation.
Results
While body weight was minimally modulated by ABX-mediated perturbation of gut bacterial populations, adult male mice given ABX were more resistant to the increased energy expenditure and fat loss that are induced by 10,12 CLA supplementation. Transplanting cecal contents from donor mice losing weight due to oral 10,12 CLA consumption into conventional or germ-free mice led to improved glucose metabolism with increased butyrate production.
Conclusions
These data suggest a critical role for the microbiota in diet-modulated changes in energy balance and glucose metabolism, and distinguish the metabolic effects of orally delivered 10,12 CLA from cecal transplantation of the resulting microbiota.
- Abstract
Improvement of MASLD and MASH by suppression of hepatic N-acetyltransferase 10
Objective
Metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH) are characterized by excessive triglyceride accumulation in the liver. However, due to an incomplete understanding of its pathogenesis, more efforts are needed to identify specific and effective treatments. N4-acetylcytidine (ac4C) is a newly discovered RNA modification to regulate mRNA. N-acetyltransferase 10 (NAT10) has not been fully explored in MASLD and MASH.
Methods
The clinical relevance of NAT10 was evaluated based on its expression in various mouse and human models of MASLD and MASH. Acetylated RNA immunoprecipitation sequencing and mRNA stability assays were used to explore the role of NAT10 in regulating ac4C modification and expression of target genes. Genetically engineered mice were employed to investigate the role of NAT10 in MASLD and MASH progression.
Results
Hepatic NAT10 expression was significantly increased in multiple mice and humans of MASLD and MASH. Genetic knockout of NAT10 protected mice from diet-induced hepatic steatosis and steatohepatitis, whereas overexpression of NAT10 exacerbated high-fat-diet-induced liver steatosis. Mechanistically, NAT10 binds to Srebp-1c mRNA, promoting its stability and expression, thereby upregulating lipogenic enzymes. Treatment with Remodelin, a NAT10-specific inhibitor, effectively ameliorates liver steatosis and dyslipidemia in a preclinical mouse model.
Conclusions
Our findings indicate that NAT10 could regulate lipid metabolism in MASLD and MASH by stabilizing Srebp-1c mRNA and upregulating lipogenic enzymes. This study highlights the role of NAT10 and RNA acetylation in the pathogenesis of MASLD and MASH. Thus, our findings suggest a promising new therapeutic approach, such as the use of NAT10 inhibitor, for treating metabolic liver disease.
- Abstract
Knock-out of CD73 delays the onset of HR-negative breast cancer by reprogramming lipid metabolism and is associated with increased tumor mutational burden
Objective
CD73 (ecto-5′-nucleotidase, NT5E), a cell-surface enzyme converting 5′-AMP to adenosine, is crucial for cancer progression. However, its role in the tumorigenesis process remains mostly obscure. We aimed to demonstrate CD73's role in breast cancer (BC) tumorigenesis through metabolic rewiring of fatty acid metabolism, a process recently indicated to be regulated by BC major prognostic markers, hormone receptors (HR) for estrogen (ER), and progesterone (PR).
Methods
A murine model of chemically induced mammary gland tumorigenesis was applied to analyze CD73 knock-out (KO)-induced changes at the transcriptome (RNA-seq), proteome (IHC, WB), and lipidome (GC-EI-MS) levels. CD73 KO-induced changes were correlated with scRNA-seq and bulk RNA-seq data for human breast tissues and BCs from public collections and confirmed at the proteome level with IHC or WB analysis of BC tissue microarrays and cell lines.
Results
CD73 KO delayed the onset of HR/PR-negative mammary tumors in a murine model. This delay correlated with increased expression of genes related to biosynthesis and β-oxidation of fatty acids (FAs) in the CD73 KO group at the initiation stage. STRING analysis based on RNA-seq data indicated an interplay between CD73 KO, up-regulated expression of PR-coding gene, and DEGs involved in FA metabolism, with PPARγ, a main regulator of FA synthesis, as a main connective node. In epithelial cells of mammary glands, PPARγ expression correlated with CD73 at the RNA level. With cancer progression, CD73 KO increased the levels of PUFAn3/6 (polyunsaturated omega 3/6 FAs), known ligands of PPARγ and target for lipid peroxidation, which may lead to oxidative DNA damage. It correlated with the downregulation of genes involved in cellular stress response (Mlh1, Gsta3), PR–or CD73-dependent changes in the intracellular ROS levels and expression or activation of proteins involved in DNA repair or oxidative stress response in mammary tumor or human BC cell lines, increased tumor mutational burden (TMB) and genomic instability markers in CD73 low HR-negative human BCs, and the prolonged onset of tumors in the CD73 KO HR/PR-negative group.
Conclusions
CD73 has a significant role in tumorigenesis driving the reprogramming of lipid metabolism through the regulatory loop with PR and PPARγ in epithelial cells of mammary glands. Low CD73 expression/CD73 KO might enhance mutational burden by disrupting this regulatory loop, delaying the onset of HR-negative tumors. Our results support combining therapy targeting the CD73-adenosine axis and tumor lipidome against HR-negative tumors, especially at their earliest developmental stage.
- Abstract
CPEB2-activated Prdm16 translation promotes brown adipocyte function and prevents obesity
Objective
Brown adipose tissue (BAT) plays an important role in mammalian thermogenesis through the expression of uncoupling protein 1 (UCP1). Our previous study identified cytoplasmic polyadenylation element binding protein 2 (CPEB2) as a key regulator that activates the translation of Ucp1 with a long 3′-untranslated region (Ucp1L) in response to adrenergic signaling. Mice lacking CPEB2 or Ucp1L exhibited reduced UCP1 expression and impaired thermogenesis; however, only CPEB2-null mice displayed obesogenic phenotypes. Hence, this study aims to investigate how CPEB2-controlled translation impacts body weight.
Methods
Body weight measurements were conducted on mice with global knockout (KO) of CPEB2, UCP1 or Ucp1L, as well as those with conditional knockout of CPEB2 in neurons or adipose tissues. RNA sequencing coupled with bioinformatics analysis was used to identify dysregulated gene expression in CPEB2-deficient BAT. The role of CPEB2 in regulating PRD1-BF1-RIZ1 homologous-domain containing 16 (PRDM16) expression was subsequently confirmed by RT-qPCR, Western blotting, polysomal profiling and luciferase reporter assays. Adeno-associated viruses (AAV) expressing CPEB2 or PRDM16 were delivered into BAT to assess their efficacy in mitigating weight gain in CPEB2-KO mice.
Results
We validated that defective BAT function contributed to the increased weight gain in CPEB2-KO mice. Transcriptomic profiling revealed upregulated expression of genes associated with muscle development in CPEB2-KO BAT. Given that both brown adipocytes and myocytes stem from myogenic factor 5-expressing precursors, with their cell-fate differentiation regulated by PRDM16, we identified that Prdm16 was translationally upregulated by CPEB2. Ectopic expression of PRDM16 in CPEB2-deprived BAT restored gene expression profiles and decreased weight gain in CPEB2-KO mice.
Conclusions
In addition to Ucp1L, activation of Prdm16 translation by CPEB2 is critical for sustaining brown adipocyte function. These findings unveil a new layer of post-transcriptional regulation governed by CPEB2, fine-tuning thermogenic and metabolic activities of brown adipocytes to control body weight.
- Abstract
IGFBP2 functions as an endogenous protector against hepatic steatosis via suppression of the EGFR-STAT3 pathway
Objective
Non-alcoholic fatty liver disease (NAFLD) is deemed as an emerging global epidemic, whereas the underlying pathogenic mechanism remains to be clarified. We aimed to systemically analyze all the NAFLD-related gene expression datasets from published human-based studies, by which exploring potential key factors and mechanisms accounting for the pathogenesis of NAFLD.
Methods
Robust rank aggregation (RRA) method was used to integrate NAFLD-related gene expression datasets. For fatty liver study, adeno-associated virus (AAV) delivery and genetic knockout mice were used to create IGFBP2 (Insulin-like growth factor binding protein 2) gain- or loss-of function models. Western blot, Co-immunoprecipitation (Co-IP), immunofluorescent (IF) staining, luciferase assay, molecular docking simulation were performed to reveal the IGFBP2-EGFR-STAT3 axis involved. Key axis protein levels in livers from healthy donors and patients with NAFLD were assessed via immunohistochemical staining.
Results
By using RRA method, the present study identified IGFBP2 being the most significantly down-regulated gene in all NAFLD subjects. The decreased IGFBP2 expression was further confirmed in the liver tissues from patients and animal models of NAFLD. IGFBP2 deficiency aggravated hepatic steatosis and NASH phenotypes and promoted lipogenic gene expression both in vivo and in vitro. Mechanistically, IGFBP2 directly binds to and regulates EGFR, whereas blockage of the IGFBP2-EGFR complex by knockdown of IGFBP2 resulted in the EGFR-STAT3 pathway activation, which in turn promoted the promoter activity of Srebf1. By using molecular docking simulation and protein-protein interaction analysis, the sequence of 233-257 amino acids in IGFBP2 was characterized as a key motif responding for its specific binding to EGFR and the protective effect against hepatic steatosis.
Conclusions
The current study has, for the first time, identified IGFBP2 as a novel protector against hepatosteatosis. The protective effect is mediated by its specific interaction with EGFR and thereby suppressing the EGFR-STAT3 pathway. Therefore, pharmaceutically targeting the IGFBP2-EGFR-STAT3 axis may provide a theoretical basis for for the treatment of NAFLD/NASH and the associated diseases.
- Abstract
Intestinal gluconeogenesis controls the neonatal development of hypothalamic feeding circuits
Objective
Intestinal gluconeogenesis (IGN) regulates adult energy homeostasis in part by controlling the same hypothalamic targets as leptin. In neonates, leptin exhibits a neonatal surge controlling axonal outgrowth between the different hypothalamic nuclei involved in feeding circuits and autonomic innervation of peripheral tissues involved in energy and glucose homeostasis. Interestingly, IGN is induced during this specific time-window. We hypothesized that the neonatal pic of IGN also regulates the development of hypothalamic feeding circuits and sympathetic innervation of adipose tissues.
Methods
We genetically induced neonatal IGN by overexpressing G6pc1 the catalytic subunit of glucose-6-phosphatase (the mandatory enzyme of IGN) at birth or at twelve days after birth. The neonatal development of hypothalamic feeding circuits was studied by measuring Agouti-related protein (AgRP) and Pro-opiomelanocortin (POMC) fiber density in hypothalamic nuclei of 20-day-old pups. The effect of the neonatal induction of intestinal G6pc1 on sympathetic innervation of the adipose tissues was studied via tyrosine hydroxylase (TH) quantification. The metabolic consequences of the neonatal induction of intestinal G6pc1 were studied in adult mice challenged with a high-fat/high-sucrose (HFHS) diet for 2 months.
Results
Induction of intestinal G6pc1 at birth caused a neonatal reorganization of AgRP and POMC fiber density in the paraventricular nucleus of the hypothalamus, increased brown adipose tissue tyrosine hydroxylase levels, and protected against high-fat feeding-induced metabolic disorders. In contrast, inducing intestinal G6pc1 12 days after birth did not impact AgRP/POMC fiber densities, adipose tissue innervation or adult metabolism.
Conclusion
These findings reveal that IGN at birth but not later during postnatal life controls the development of hypothalamic feeding circuits and sympathetic innervation of adipose tissues, promoting a better management of metabolism in adulthood.
- Abstract
An INSULIN and IAPP dual reporter enables tracking of functional maturation of stem cell-derived insulin producing cells
Objective
Human embryonic stem cell (hESC; SC)-derived pancreatic β cells can be used to study diabetes pathologies and develop cell replacement therapies. Although current differentiation protocols yield SCβ cells with varying degrees of maturation, these cells still differ from deceased donor human β cells in several respects. We sought to develop a reporter cell line that could be used to dynamically track SCβ cell functional maturation.
Methods
To monitor SCβ cell maturation in vitro, we created an IAPP-2A-mScar and INSULIN-2A-EGFP dual fluorescent reporter (INS2A-EGFP/+;IAPP2A-mScarlet/+) hESC line using CRISPR/Cas9. Pluripotent SC were then differentiated using a 7-stage protocol to islet-like cells. Immunohistochemistry, flow cytometry, qPCR, GSIS and electrophysiology were used to characterise resulting cell populations.
Results
We observed robust expression of EGFP and mScarlet fluorescent proteins in insulin- and IAPP-expressing cells without any compromise to their differentiation. We show that the proportion of insulin-producing cells expressing IAPP increases over a 4-week maturation period, and that a subset of insulin-expressing cells remain IAPP-free. Compared to this IAPP-free population, we show these insulin- and IAPP-expressing cells are less polyhormonal, more glucose-sensitive, and exhibit decreased action potential firing in low (2.8 mM) glucose.
Conclusions
The INS2A-EGFP/+;IAPP2A-mScarlet/+ hESC line provides a useful tool for tracking populations of maturing hESC-derived β cells in vitro. This tool has already been shared with 3 groups and is freely available to all.
- Abstract
Dietary protein defends lean mass and maintains the metabolic benefits of glucagon receptor agonism in mice
Objective
Glucagon has long been proposed as a component of multi-agonist obesity therapeutics due to its ability to induce energy expenditure and cause weight loss. However, chronic glucagon-receptor agonism has been associated with a reduction in circulating amino acids and loss of lean mass. Importantly, it is currently not known whether the metabolic benefits of glucagon can be maintained under contexts that allow the defence of lean mass.
Methods
We investigate the metabolic effects of the long-acting glucagon receptor agonist, G108, when administered to obese mice at low-doses, and with dietary protein supplementation.
Results
Dietary protein supplementation can only fully defend lean mass at a low dose of G108 that is sub-anorectic and does not reduce fat mass. However, in this context, G108 is still highly effective at improving glucose tolerance and reducing liver fat in obese mice. Mechanistically, liver RNA-Seq analysis reveals that dietary protein supplementation defends anabolic processes in low-dose G108-treated mice, and its effects on treatment-relevant glucose and lipid pathways are preserved.
Conclusion
Glucagon-mediated energy expenditure and weight loss may be mechanistically coupled to hypoaminocidemia and lean mass loss. However, our data suggest that glucagon can treat MAFLD at doses which allow full defence of lean mass given sufficient dietary protein intake. Therefore, proportionate glucagon therapy may be safe and effective in targeting hepatocytes and improving in glycaemia and liver fat.
Graphical abstract
Low dose glucagon agonism stimulates amino acid catabolism and lipid metabolism in liver. A high protein diet prevents the consequences of hypoaminoacidemia without affecting beneficial effects on MAFLD.
- Abstract
Lead-in calorie restriction enhances the weight-lowering efficacy of incretin hormone-based pharmacotherapies in mice
Objectives
The potential benefits of combining lifestyle changes with weight loss pharmacotherapies for obesity treatment are underexplored. Building on recent clinical observations, this study aimed to determine whether “lead-in” calorie restriction before administering clinically approved weight loss medications enhances the maximum achievable weight loss in preclinical models.
Methods
Diet-induced obese mice (DIO) were exposed to 7 or 14 days of calorie restriction before initiating treatment with semaglutide (a glucagon-like peptide-1 receptor (GLP-1R) agonist), tirzepatide (a GLP-1R/glucose insulinotropic peptide receptor (GIPR) co-agonist), or setmelanotide (a melanocortin-4 receptor (MC4R) agonist). Follow-up assessments using indirect calorimetry determined the contributions of energy intake and expenditure linked to consecutive exposure to dieting followed by pharmacotherapy.
Results
Calorie restriction prior to treatment with semaglutide or tirzepatide enhanced the weight loss magnitude of both incretin-based therapies in DIO mice, reflected by a reduction in fat mass and linked to reduced energy intake and a less pronounced adaptive drop in energy expenditure. These benefits were not observed with the MC4R agonist, setmelanotide.
Conclusions
Our findings provide compelling evidence that calorie restriction prior to incretin-based therapy enhances the achievable extent of weight loss, as reflected in a weight loss plateau at a lower level compared to that of treatment without prior calorie reduction. This work suggests that more intensive lifestyle interventions should be considered prior to pharmacological treatment, encouraging further exploration and discussion of the current standard of care.
- Abstract
Acetate drives ovarian cancer quiescence via ACSS2-mediated acetyl-CoA production
Quiescence is a reversible cell cycle exit traditionally thought to be associated with a metabolically inactive state. Recent work in muscle cells indicates that metabolic reprogramming is associated with quiescence. Whether metabolic changes occur in cancer to drive quiescence is unclear. Using a multi-omics approach, we found that the metabolic enzyme ACSS2, which converts acetate into acetyl-CoA, is both highly upregulated in quiescent ovarian cancer cells and required for their survival. Indeed, quiescent ovarian cancer cells have increased levels of acetate-derived acetyl-CoA, confirming increased ACSS2 activity in these cells. Furthermore, either inducing ACSS2 expression or supplementing cells with acetate was sufficient to induce a reversible quiescent cell cycle exit. RNA-Seq of acetate treated cells confirmed negative enrichment in multiple cell cycle pathways as well as enrichment of genes in a published G0 gene signature. Finally, analysis of patient data showed that ACSS2 expression is upregulated in tumor cells from ascites, which are thought to be more quiescent, compared to matched primary tumors. Additionally, high ACSS2 expression is associated with platinum resistance and worse outcomes. Together, this study points to a previously unrecognized ACSS2-mediated metabolic reprogramming that drives quiescence in ovarian cancer. As chemotherapies to treat ovarian cancer, such as platinum, have increased efficacy in highly proliferative cells, our data give rise to the intriguing question that metabolically-driven quiescence may affect therapeutic response.