-
Volume 69, March 2023 - current issue
-
Vol 27, September 2019
-
Vol 26, August 2019
-
Vol 25, July 2019
-
Vol 24, June 2019
-
Vol 23, May 2019
-
Vol 22, April 2019
-
Vol 21, March 2019
-
Vol 20, February 2019
-
Vol 19, January 2019
-
Vol 18, December 2018
-
Vol 17, November 2018
-
Vol 16, October 2018
-
Vol 15, September 2018
-
Vol 14, August 2018
-
Vol 13, July 2018
-
Vol 12, June 2018
-
Vol 11, May 2018
-
Vol 10, April 2018
-
Vol 9, March 2018
-
Vol 8, February 2018
-
Vol 7, January 2018
-
Vol 6 No 12, December 2017
-
Vol 6 No 11, November 2017
-
Vol 6 No 10, October 2017
-
Vol 6 No 9, September 2017
-
Vol 6 No 8, August 2017
-
Vol 6 No 7, July 2017
-
Vol 6 No 6, June 2017
-
Vol 6 No 5, May 2017
-
Vol 6 No 4, April 2017
-
Vol 6 No 3, March 2017
-
Vol 6 No 2, February 2017
-
Vol 6 No 1, January 2017
-
Vol 5 No 12, December 2016
-
Vol 5 No 11, November 2016
-
Vol 5 No 10, October 2016
-
Vol 5 No 9, September 2016
-
Vol 5 No 8, August 2016
-
Vol 5 No 7, July 2016
-
Vol 5 No 6, June 2016
-
Vol 5 No 5, May 2016
-
Vol 5 No 4, April 2016
-
Vol 5 No 3, March 2016
-
Vol 5 No 2, February 2016
-
Vol 5 No 1, January 2016
-
Vol 4 No 12, December 2015
-
Vol 4 No 11, November 2015
-
Vol 4 No 10, October 2015
Cover Story Current Issue

Consuming small amounts of palatable food, i.e., snacking, at various times of the day is a highly prevalent behavior in most modern societies. Chronic rest-phase food intake – especially of high-caloric items – promotes obesity and disrupts endogenous circadian rhythms. Notably, humans and mice are more prone to hedonically driven eating behavior, the overconsumption of palatable food, during the late active/early inactive phase, i.e., the morning in mice, the evening in humans. While the effects of calorie-dense food items in promoting body weight gain are well documented, the metabolic impact of snack timing is far less understood.
Kimberly Begemann, Isabel Heyde, Pia Witt, Julica Inderhees, ... Henrik Oster
Current Issue
VLDL receptor gene therapy for reducing atherogenic lipoproteins
Over the past 40 years, there has been considerable research into the management and treatment of atherogenic lipid disorders. Although the majority of treatments and management strategies for cardiovascular disease (CVD) center around targeting low-density lipoprotein cholesterol (LDL-C), there is mounting evidence for the residual CVD risk attributed to high triglyceride (TG) and lipoprotein(a) (Lp(a)) levels despite the presence of lowered LDL-C levels. Among the biological mechanisms for clearing TG-rich lipoproteins, the VLDL receptor (VLDLR) plays a key role in the trafficking and metabolism of lipoprotein particles in multiple tissues, but it is not ordinarily expressed in the liver. Since VLDLR is capable of binding and internalizing apoE-containing TG-rich lipoproteins as well as Lp(a), hepatic VLDLR expression has the potential for promoting clearance of these atherogenic particles from the circulation and managing the residual CVD risk not addressed by current lipid lowering therapies. This review provides an overview of VLDLR function and the potential for developing a genetic medicine based on liver-targeted VLDLR gene expression.
Objectives
Metabolic-associated fatty liver disease (MAFLD) is the most common chronic liver disease that can range from hepatic steatosis to non-alcoholic steatohepatitis (NASH), which can lead to fibrosis and cirrhosis. Recently, ketogenic diet (KD), a low carbohydrate diet, gained popularity as a weight-loss approach, although it has been reported to induce hepatic insulin resistance and steatosis in animal model systemsvia an undefined mechanism. Herein, we investigated the KD metabolic benefits and its contribution to the pathogenesis of NASH.
Methods
Using metabolic, biochemical and omics approaches, we identified the effects of a KD on NASH and investigated the mechanisms by which KD induces hepatic insulin resistance and steatosis.
Results
We demonstrate that KD can induce fibrosis and NASH regardless of body weight losscompared to high-fat diet (HFD) fed mice at thermoneutrality. At ambient temperature (23 °C), KD-fed mice develop a severe hepatic injury, inflammation, and steatosis. In addition, KD increases liver cholesterol, IL-6, and p-JNK and aggravates diet induced-glucose intolerance and hepatic insulin resistance compared to HFD. Pharmacological inhibition of IL-6 and JNK reverses KD-induced glucose intolerance, and hepatic steatosis and restores insulin sensitivity.
Conclusions
Our studies uncover a new mechanism for KD-induced hepatic insulin resistance and NASH potentially via IL-6-JNK signaling and provide a new NASH mouse model.
Objective
Serotonin (5HT) is a well-known anorexigenic molecule, and 5HT neurons of dorsal raphe nucleus (DRN) have been implicated in suppression of feeding; however, the downstream circuitry is poorly understood. Here we explored major projections of DRN5HT neurons for their capacity to modulate feeding.
Methods
We used optogenetics to selectively activate DRN5HT axonal projections in hypothalamic and extrahypothalamic areas and monitored food intake. We next used fiber photometry to image the activity dynamics of DRN5HT axons and 5HT levels in projection areas in response feeding and metabolic hormones. Finally, we used electrophysiology to determine how DRN5HT axons affect downstream neuron activity.
Results
We found that selective activation of DRN5HT axons in (DRN5HT → LH) and (DRN5HT → BNST) suppresses feeding whereas activating medial hypothalamic projections has no effect. Using in vivo imaging, we found that food access and satiety hormones activate DRN5HT projections to LH where they also rapidly increase extracellular 5HT levels. Optogenetic mapping revealed that DRN5HT → LHvGAT and DRN5HT → LHvGlut2connections are primarily inhibitory and excitatory respectively. Further, in addition to its direct action on LH neurons, we found that 5HT suppresses GABA release from presynaptic terminals arriving from AgRP neurons.
Conclusions
These findings define functionally redundant forebrain circuits through which DRN5HTneurons suppress feeding and reveal that these projections can be modulated by metabolic hormones.
Objective
Mitochondria fuel most animal cells with ATP, ensuring proper energetic metabolism of organs. Early and extensive mitochondrial dysfunction often leads to severe disorders through multiorgan failure. Hacd2 gene encodes an enzyme involved in very long chain fatty acid (C ≥ 18) synthesis, yet its roles in vivo remain poorly understood. Since mitochondria function relies on specific properties of their membranes conferred by a particular phospholipid composition, we investigated if Hacd2 gene participates to mitochondrial integrity.
Methods
We generated two mouse models, the first one leading to a partial knockdown of Hacd2 expression and the second one, to a complete knockout of Hacd2 expression. We performed an in-depth analysis of the associated phenotypes, from whole organism to molecular scale.
Results
Thanks to these models, we show that Hacd2 displays an early and broad expression, and that its deficiency in mice is lethal. Specifically, partial knockdown of Hacd2expression leads to death within one to four weeks after birth, from a sudden growth arrest followed by cachexia and lethargy. The total knockout of Hacd2 is even more severe, characterized by embryonic lethality around E9.5 following developmental arrest and pronounced cardiovascular malformations. In-depth mechanistic analysis revealed that Hacd2 deficiency causes altered mitochondrial efficiency and ultrastructure, as well as accumulation of oxidized cardiolipin.
Conclusions
Altogether, these data indicate that the Hacd2 gene is essential for energetic metabolism during embryonic and postnatal development, acting through the control of proper mitochondrial organization and function.
Objective
Cold stimuli trigger the conversion of white adipose tissue into beige adipose tissue, which is capable of non-shivering thermogenesis. However, what process drives this activation of thermogenesis in beige fat is not well understood. Here, we examine the ER protein NNAT as a regulator of thermogenesis in adipose tissue.
Methods
We investigated the regulation of adipose tissue NNAT expression in response to changes in ambient temperature. We also evaluated the functional role of NNAT in thermogenic regulation using Nnat null mice and primary adipocytes that lack or overexpress NNAT.
Results
Cold exposure or treatment with a β3-adrenergic agonist reduces the expression of adipose tissue NNAT in mice. Genetic disruption of Nnat in mice enhances inguinal adipose tissue thermogenesis. Nnat null mice exhibit improved cold tolerance both in the presence and absence of UCP1. Gain-of-function studies indicate that ectopic expression of Nnat abolishes adrenergic receptor-mediated respiration in beige adipocytes. NNAT physically interacts with the ER Ca2+-ATPase (SERCA) in adipocytes and inhibits its activity, impairing Ca2+ transport and heat dissipation. We further demonstrate that NHLRC1, an E3 ubiquitin protein ligase implicated in proteasomal degradation of NNAT, is induced by cold exposure or β3-adrenergic stimulation, thus providing regulatory control at the protein level. This serves to link cold stimuli to NNAT degradation in adipose tissue, which in turn leads to enhanced SERCA activity.
Conclusions
Our study implicates NNAT in the regulation of adipocyte thermogenesis.
Objective
Non-shivering thermogenesis (NST) mediated by uncoupling protein 1 (UCP1) in brown adipose tissue (BAT) can be activated via the adrenergic system in response to cold or diet, contributing to both thermal and energy homeostasis. Other mechanisms, including metabolism of skeletal muscle, may also be involved in NST. However, relative contribution of these energy dissipating pathways and their adaptability remain a matter of long-standing controversy.
Methods
We used warm-acclimated (30 °C) mice to characterize the effect of an up to 7-day cold acclimation (6 °C; CA) on thermoregulatory thermogenesis, comparing inbred mice with a genetic background conferring resistance (A/J) or susceptibility (C57BL/6 J) to obesity.
Results
Both warm-acclimated C57BL/6 J and A/J mice exhibited similar cold endurance, assessed as a capability to maintain core body temperature during acute exposure to cold, which improved in response to CA, resulting in comparable cold endurance and similar induction of UCP1 protein in BAT of mice of both genotypes. Despite this, adrenergic NST in BAT was induced only in C57BL/6 J, not in A/J mice subjected to CA. Cold tolerance phenotype of A/J mice subjected to CA was not based on increased shivering, improved insulation, or changes in physical activity. On the contrary, lipidomic, proteomic and gene expression analyses along with palmitoyl carnitine oxidation and cytochrome c oxidase activity revealed induction of lipid oxidation exclusively in skeletal muscle of A/J mice subjected to CA. These changes appear to be related to skeletal muscle NST, mediated by sarcolipin-induced uncoupling of sarco(endo)plasmic reticulum calcium ATPase pump activity and accentuated by changes in mitochondrial respiratory chain supercomplexes assembly.
Conclusions
Our results suggest that NST in skeletal muscle could be adaptively augmented in the face of insufficient adrenergic NST in BAT, depending on the genetic background of the mice. It may provide both protection from cold and resistance to obesity, more effectively than BAT.
Objective
Calorie restriction is a first-line treatment for overweight individuals with metabolic impairments. However, few patients can adhere to long-term calorie restriction. An alternative approach to calorie restriction that also causes negative energy balance is mitochondrial uncoupling, which decreases the amount of energy that can be extracted from food. Herein we compare the metabolic effects of calorie restriction with the mitochondrial uncoupler BAM15 in the db/db mouse model of severe hyperglycemia, obesity, hypertriglyceridemia, and fatty liver.
Methods
Male db/db mice were treated with ∼50% calorie restriction, BAM15 at two doses of 0.1% and 0.2% (w/w) admixed in diet, or 0.2% BAM15 with time-restricted feeding from 5 weeks of age. Mice were metabolically phenotyped over 4 weeks with assessment of key readouts including body weight, glucose tolerance, and liver steatosis. At termination, liver tissues were analysed by metabolomics and qPCR.
Results
Calorie restriction and high-dose 0.2% BAM15 decreased body weight to a similar extent, but mice treated with BAM15 had far better improvement in glucose control. High-dose BAM15 treatment completely normalized fasting glucose and glucose tolerance to levels similar to lean db/+ control mice. Low-dose 0.1% BAM15 did not affect body mass but partially improved glucose tolerance to a similar degree as 50% calorie restriction. Both calorie restriction and high-dose BAM15 significantly improved hyperglucagonemia and liver and serum triglyceride levels. Combining high-dose BAM15 with time-restricted feeding to match the time that calorie restricted mice were fed resulted in the best metabolic phenotype most similar to lean db/+ controls. BAM15-mediated improvements in glucose control were associated with decreased glucagon levels and decreased expression of enzymes involved in hepatic gluconeogenesis.
Conclusions
BAM15 and calorie restriction treatments improved most metabolic disease phenotypes in db/db mice. However, mice fed BAM15 had superior effects on glucose control compared to the calorie restricted group that consumed half as much food. Submaximal dosing with BAM15 demonstrated that its beneficial effects on glucose control are independent of weight loss. These data highlight the potential for mitochondrial uncoupler pharmacotherapies in the treatment of metabolic disease.
Objective
Dysfunctional, unhealthy expansion of white adipose tissue due to excess dietary intake is a process at the root of obesity and Type 2 Diabetes development. The objective of this study is to contribute to a better understanding of the underlying mechanism(s) regulating the early stages of adipose tissue expansion and adaptation to dietary stress due to an acute, high-fat diet (HFD) challenge, with a focus on the communication between adipocytes and other stromal cells.
Methods
We profiled the early response to high-fat diet exposure in wildtype and adipocyte-specific GPS2-KO (GPS2-AKO) mice at the cellular, tissue and organismal level. A multi-pronged approach was employed to disentangle the complex cellular interactions dictating tissue remodeling, via single-cell RNA sequencing and FACS profiling of the stromal fraction, and semi-quantitative proteomics of the adipocyte-derived exosomal cargo after 5 weeks of HFD feeding.
Results
Our results indicate that loss of GPS2 in mature adipocytes leads to impaired adaptation to the metabolic stress imposed by HFD feeding. GPS2-AKO mice are significantly more inflamed, insulin resistant, and obese, compared to the WT counterparts. At the cellular level, lack of GPS2 in adipocytes impacts upon other stromal populations, with both the eWAT and scWAT depots exhibiting changes in the immune and non-immune compartments that contribute to an increase in inflammatory and anti-adipogenic cell types. Our studies also revealed that adipocyte to stromal cell communication is facilitated by exosomes, and that transcriptional rewiring of the exosomal cargo is crucial for tissue remodeling. Loss of GPS2 results in increased expression of secreted factors promoting a TGFβ-driven fibrotic microenvironment favoring unhealthy tissue remodeling and expansion.
Conclusions
Adipocytes serve as an intercellular signaling hub, communicating with the stromal compartment via paracrine signaling. Our study highlights the importance of proper regulation of the ‘secretome’ released by energetically stressed adipocytes at the onset of obesity. Altered transcriptional regulation of factors secreted via adipocyte-derived exosomes (AdExos), in the absence of GPS2, contributes to the establishment of an anti-adipogenic, pro-fibrotic adipose tissue environment, and to hastened progression towards a metabolically dysfunctional phenotype.
Objective
Pancreatic β cells play a key role in maintaining glucose homeostasis; dysfunction of this critical cell type causes type 2 diabetes (T2D). Emerging evidence points to sex differences in β cells, but few studies have examined male-female differences in β cell stress responses and resilience across multiple contexts, including diabetes. Here, we address the need for high-quality information on sex differences in β cell and islet gene expression and function using both human and rodent samples.
Methods
In humans, we compared β cell gene expression and insulin secretion in donors with T2D to non-diabetic donors in both males and females. In mice, we generated a well-powered islet RNAseq dataset from 20-week-old male and female siblings with similar insulin sensitivity. Our unbiased gene expression analysis pointed to a sex difference in the endoplasmic reticulum (ER) stress response. Based on this analysis, we hypothesized female islets would be more resilient to ER stress than male islets. To test this, we subjected islets isolated from age-matched male and female mice to thapsigargin treatment and monitored protein synthesis, cell death, and β cell insulin production and secretion. Transcriptomic and proteomic analyses were used to characterize sex differences in islet responses to ER stress.
Results
Our single-cell analysis of human β cells revealed sex-specific changes to gene expression and function in T2D, correlating with more robust insulin secretion in human islets isolated from female donors with T2D compared to male donors with T2D. In mice, RNA sequencing revealed differential enrichment of unfolded protein response pathway-associated genes, where female islets showed higher expression of genes linked with protein synthesis, folding, and processing. This differential expression was physiologically significant, as islets isolated from female mice were more resilient to ER stress induction with thapsigargin. Specifically, female islets showed a greater ability to maintain glucose-stimulated insulin production and secretion during ER stress compared with males.
Conclusions
Our data demonstrate sex differences in β cell gene expression in both humans and mice, and that female β cells show a greater ability to maintain glucose-stimulated insulin secretion across multiple physiological and pathological contexts.
Objective
Snacking, i.e., the intake of small amounts of palatable food items, is a common behavior in modern societies, promoting overeating and obesity. Shifting food intake into the daily rest phase disrupts circadian rhythms and is also known to stimulate weight gain. We therefore hypothesized that chronic snacking in the inactive phase may promote body weight gain and that this effect is based on disruption of circadian clocks.
Methods
Male mice were fed a daily chocolate snack either during their rest or their active phase and body weight development and metabolic parameters were investigated. Snacking experiments were repeated in constant darkness and in clock-deficient mutant mice to examine the role of external and internal time cues in mediating the metabolic effects of snacking.
Results
Chronic snacking in the rest phase increased body weight gain and disrupted metabolic circadian rhythms in energy expenditure, body temperature, and locomotor activity. Additionally, these rest phase snacking mice assimilated more energy during the inactive phase. Body weight remained increased in rest phase snacking wildtype mice in constant darkness as well as in clock-deficient mutant mice under a regular light–dark cycle compared to mice snacking in the active phase. Weight gain effects were abolished in clock-deficient mice in constant darkness.
Conclusions
Our data suggest that mistimed snacking increases energy resorption and promotes body weight gain. This effect requires a functional circadian clock at least under constant darkness conditions.
Objective
Obesity is associated with metabolic dysfunction of white adipose tissue (WAT). Activated adipocytes secrete pro-inflammatory cytokines resulting in the recruitment of pro-inflammatory macrophages, which contribute to WAT insulin resistance. The bile acid (BA)-activated nuclear Farnesoid X Receptor (FXR) controls systemic glucose and lipid metabolism. Here, we studied the role of FXR in adipose tissue function.
Methods
We first investigated the immune phenotype of epididymal WAT (eWAT) from high fat diet (HFD)-fed whole-body FXR-deficient (FXR−/−) mice by flow cytometry and gene expression analysis. We then generated adipocyte-specific FXR-deficient (Ad-FXR−/−) mice and analyzed systemic and eWAT metabolism and immune phenotype upon HFD feeding. Transcriptomic analysis was done on mature eWAT adipocytes from HFD-fed Ad-FXR−/− mice.
Results
eWAT from HFD-fed whole-body FXR−/− and Ad-FXR−/− mice displayed decreased pro-inflammatory macrophage infiltration and inflammation. Ad-FXR−/− mice showed lower blood glucose concentrations, improved systemic glucose tolerance and WAT insulin sensitivity and oxidative stress. Transcriptomic analysis identified Gsta4, a modulator of oxidative stress in WAT, as the most upregulated gene in Ad-FXR−/−mouse adipocytes. Finally, chromatin immunoprecipitation analysis showed that FXR binds the Gsta4 gene promoter.
Conclusions
These results indicate a role for the adipocyte FXR-GSTA4 axis in controlling HFD-induced inflammation and systemic glucose homeostasis.
Objectives
Type 1 diabetes (T1D) is caused by progressive immune-mediated loss of insulin-producing β-cells. Inflammation is detrimental to β-cell function and survival, moreover, both apoptosis and necrosis have been implicated as mechanisms of β-cell loss in T1D. The receptor interacting serine/threonine protein kinase 1 (RIPK1) promotes inflammation by serving as a scaffold for NF-κB and MAPK activation, or by acting as a kinase that triggers apoptosis or necroptosis. It is unclear whether RIPK1 kinase activity is involved in T1D pathology. In the present study, we investigated if absence of RIPK1 activation would affect the susceptibility to immune-mediated diabetes or diet induced obesity (DIO).
Methods
The RIPK1 knockin mouse line carrying a mutation mimicking serine 25 phosphorylation (Ripk1S25D/S25D), which abrogates RIPK1 kinase activity, was utilized to assess the in vivo role of RIPK1 in immune-mediated diabetes or diet induced obesity (DIO). In vitro, β-cell death and RIPK1 kinase activity was analysed in conditions known to induce RIPK1-dependent apoptosis/necroptosis.
Results
We demonstrate that Ripk1S25D/S25D mice presented normal glucose metabolism and β-cell function. Furthermore, immune-mediated diabetes and DIO were not different between Ripk1S25D/S25D and Ripk1+/+ mice. Despite strong activation of RIPK1 kinase and other necroptosis effectors (RIPK3 and MLKL) by TNF+BV6+zVAD, no cell death was observed in mouse islets nor human β-cells.
Conclusion
Our results contrast recent literature showing that most cell types undergo necroptosis following RIPK1 kinase activation. This peculiarity may reflect an adaptation to the inability of β-cells to proliferate and self-renewal.
Objective
Renal fibrosis is a hallmark for chronic kidney disease (CKD), and often leads to end stage renal disease (ESRD). However, limited interventions are available clinically to ameliorate or reverse renal fibrosis.
Methods
Herein, we evaluated whether blockade of endotrophin through neutralizing antibodies protects from renal fibrosis in the podocyte insult model (the “POD-ATTAC” mouse). We determined the therapeutic effects of endotrophin targeted antibody through assessing renal function, renal inflammation and fibrosis at histological and transcriptional levels, and podocyte regeneration.
Results
We demonstrated that neutralizing endotrophin antibody treatment significantly ameliorates renal fibrosis at the transcriptional, morphological, and functional levels. In the antibody treatment group, expression of pro-inflammatory and pro-fibrotic genes was significantly reduced, normal renal structures were restored, collagen deposition was decreased, and proteinuria and renal function were improved. We further performed a lineage tracing study confirming that podocytes regenerate as de novo podocytes upon injury and loss, and blockade of endotrophin efficiently enhances podocyte-specific marker expressions.
Conclusion
Combined, we provide pre-clinical evidence supporting neutralizing endotrophin as a promising therapy for intervening with renal fibrosis in CKD, and potentially in other chronic fibro-inflammatory diseases.
Objective
Oligodendrocyte progenitor cell differentiation is regulated by nutritional signals in the adult median eminence (ME), but the consequences on local myelination are unknown. The aim of this study was to characterize myelin plasticity in the ME of adult mice in health or in response to chronic nutritional challenge and determine its relevance to the regulation of energy balance.
Methods
We assessed new oligodendrocyte (OL) and myelin generation and stability in the ME of healthy adult male mice using bromodeoxyuridine labelling and genetic fate mapping tools. We evaluated the contribution of microglia to ME myelin plasticity in PLX5622-treated C57BL/6J mice and in Pdgfra-Cre/ERT2;R26R-eYFP;Myrffl/fl mice, where adult oligodendrogenesis is blunted. Next, we investigated how high-fat feeding or caloric restriction impact ME OL lineage progression and myelination. Finally, we characterized the functional relevance of adult oligodendrogenesis on energy balance regulation.
Results
We show that myelinating OLs are continuously and rapidly generated in the adult ME. Paradoxically, OL number and myelin amounts remain remarkably stable in the adult ME. In fact, the high rate of new OL and myelin generation in the ME is offset by continuous turnover of both. We show that microglia are required for continuous OL and myelin production, and that ME myelin plasticity regulates the recruitment of local immune cells. Finally, we provide evidence that ME myelination is regulated by the body’s energetic status and demonstrate that ME OL and myelin plasticity are required for the regulation of energy balance and hypothalamic leptin sensitivity.
Conclusions
This study identifies a new mechanism modulating leptin sensitivity and the central control of energy balance and uncovers a previously unappreciated form of structural plasticity in the ME.
Objective
A fundamental difference between physiological and pharmacological studies in rats and humans is that withdrawal of blood from conscious rats necessitates restraint which inevitably inflicts a higher level of stress. We investigated the impact of handling on acute glucose regulation and secretion of glucoregulatory hormones in rats.
Methods
Fasted male Sprague Dawley rats (375–400 g, n = 11) were given an oral glucose tolerance test (OGTT) by gavage (2 g/kg). Blood was sampled frequently until 90 min after challenge by handheld sampling (HS) or by automated sampling (AS). In the HS experiment, blood was withdrawn by restraint and sublingual vein puncture; two weeks later, samples were obtained by AS through an implanted catheter in a carotid artery, allowing sampling without disturbing the animals.
Results
On the day of HS, post challenge glucose AUCs were ∼17% higher (P < 0.0001), despite gastric emptying (AUC) being reduced by ∼30% (P < 0.0001). Plasma insulin AUC was 3.5-fold lower (P < 0.001), and glucose-dependent insulinotropic peptide (GIP) AUC was reduced by ∼36% but glucagon-like peptide-1 concentrations were not affected. Glucagon concentrations were higher both before and after challenge (fold difference in AUCs = 3.3). Adrenocorticotropin (ACTH) and corticosterone AUCs were 2.4-fold and 3.6-fold higher (P < 0.001), respectively.
Discussion and conclusion
Our study highlights that sampling of blood from conscious rats by sublingual vein puncture inflicts stress which reduces glucose absorption and glucose tolerance and blunts secretion of insulin and GIP. As blood sampling in humans are less stressful, standard procedures of conducting OGTT's in rats by HS presumably introduce an interspecies difference that may have negative consequences for translatability of test results.
The metabolic cost of physical activity in mice using a physiology-based model of energy expenditure
Objective
Physical activity is a major component of total energy expenditure (TEE) that exhibits extreme variability in mice. Our objective was to construct a general, physiology-based model of TEE to accurately quantify the energy cost of physical activity.
Methods
Spontaneous home cage physical activity, body temperature, TEE, and energy intake were measured with frequent sampling. The energy cost of activity was modeled considering six contributors to TEE (basal metabolic rate, thermic effect of food, body temperature, cold induced thermogenesis, physical activity, and body weight). An ambient temperature of 35 °C was required to remove the contribution from cold induced thermogenesis. Basal metabolic rate was adjusted for body temperature using a Q10 temperature coefficient.
Results
We developed a TEE model that robustly explains 70-80% of the variance in TEE at 35 °C while fitting only two parameters, the basal metabolic rate and the mass-specific energy cost per unit of physical activity, which averaged 60 cal/km/g body weight. In Ucp1-/- mice the activity cost was elevated by 60%, indicating inefficiency and increased muscle thermogenesis. The diurnal rhythm in TEE was quantitatively explained by the combined diurnal differences in physical activity, body temperature, and energy intake.
Conclusions
The physiology-based model of TEE allows quantifying the energy cost of physical activity. While applied here to mice, the model should be generally valid across species. Due to the effect of body temperature, we suggest that basal metabolic rate measurements be corrected to a reference body temperature, including in humans. Having an accurate cost of physical activity allows mechanistic dissection of disorders of energy homeostasis, including obesity.
Objective
Obesity and related diseases are becoming a growing risk for public health around the world due to the westernized lifestyle. Sema7A, an axonal guidance molecule, has been known to play a role in neurite growth, bone formation, and immune regulation. Whether Sema7A participates in obesity and metabolic diseases is unknown. As several SNPs in SEMA7A and its receptors were found to correlate with BMI and metabolic parameters in the human population, we investigated the potential role of Sema7A in obesity and hepatic steatosis.
Methods
GWAS and GEPIA database was used to analyze SNPs in SEMA7A and the correlation of Sema7A expression with lipid metabolism related genes. Sema7A−/− mice and recombinant Sema7A (rSema7A) were used to study the role of Sema7A in HFD-induced obesity and hepatic steatosis. Adipose tissue-derived mesenchymal stem cells (ADSCs) were used to examine the role of Sema7A in adipogenesis, lipogenesis and downstream signaling.
Results
Deletion of Sema7A aggravated HFD-induced obesity. Sema7A deletion enhanced adipogenesis in both subcutaneous and visceral ADSCs, while the addition of rSema7A inhibited adipogenesis of ADSCs and lipogenesis of differentiated mature adipocytes. Sema7A inhibits adipo/lipogenesis potentially through its receptor integrin β1 and downstream FAK signaling. Importantly, administration of rSema7A had protective effects against diet-induced obesity in mice. In addition, deletion of Sema7A led to increased hepatic steatosis and insulin resistance in mice.
Conclusions
Our findings reveal a novel inhibitory role of Sema7A in obesity and hepatic steatosis, providing a potential new therapeutic target for obesity and metabolic diseases.
Keywords
Sema7A
Adipogenesis
Lipogenesis
ADSCs
Obesity
Hepatic steatosis
Objectives
Despite advances in treatment, an effective therapeutic strategy for acute kidney injury (AKI) is still lacking. Considering the widely reported clinical benefits of canagliflozin in the kidneys, we assessed the effects of canagliflozin on AKI.
Methods
Lipopolysaccharide was used to induce AKI in the presence of canagliflozin.
Results
Canagliflozin treatment reduced blood urea nitrogen and serum creatinine levels and improved the renal tubular structure in mice with lipopolysaccharide-induced septic AKI. Canagliflozin also suppressed the inflammatory response, oxidative stress and tubular cell death in the kidneys during septic AKI. In vitro, canagliflozin supplementation maintained mitochondrial function in lipopolysaccharide-treated HK-2 cells by restoring the mitochondrial membrane potential, inhibiting mitochondrial reactive oxygen species production and normalizing mitochondrial respiratory complex activity. In HK-2 cells, canagliflozin stimulated the adenosine monophosphate-activated protein kinase catalytic subunit alpha 1 (AMPKα1)/peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC1α)/nuclear respiratory factor 1 (NRF1) pathway, thus elevating the number of live and healthy mitochondria following lipopolysaccharide treatment. Inhibition of the AMPKα1/PGC1α/NRF1/mitochondrial biogenesis pathway abolished the protective effects of canagliflozin on renal cell mitochondria and tubular viability. Similarly, the protective effects of canagliflozin on kidney function and tubular structure were abrogated in AMPKα1-knockout mice.
Conclusions
Canagliflozin could be used to treat septic AKI by activating the AMPKα1/PGC1α/NRF1/mitochondrial biogenesis pathway.
2021 impact factor: 8.568
Here is a video of Vimeo. When the iframes is activated, a connection to Vimeo is established and, if necessary, cookies from Vimeo are also used. For further information on cookies policy click here.