Volume 26 | August 2019
Cover Story
Glucocorticoids (GCs) are extensively prescribed medicines due to their potent immunosuppressive and anti-inflammatory properties. Prolonged high-dose GC use is associated with a range of metabolic side effects, including hyperphagia, obesity, and abnormal glucose homeostasis. The mechanisms driving these adverse metabolic effects remain unclear. A potential region involved in driving these GC-induced side effects is the hypothalamic arcuate nucleus, a region that is critical for the regulation of feeding and metabolism.
Wray et al. used a global transcriptomic approach to investigate the effects of GCs in the hypothalamus. This revealed a variety of genes involved in energy regulation, of which type-II iodothyronine deiodinase (Dio2) was selected as the most promising candidate for further study. A knockdown of Dio2 attenuated the GC-induced increase in Agrp; however, knockdown conferred no protection from the observed hyperphagia or weight gain. The range of both known and novel candidate genes indicates that multiple mechanisms may contribute to the metabolic abnormalities observed with GC treatment.
All Articles
- Abstract
Objective: Pancreatic β cell failure plays a central role in the development of type 2 diabetes (T2D). While the transcription factors shaping the β cell gene expression program have received much attention, the post-transcriptional controls that are activated in β cells during stress are largely unknown. We recently identified JUND as a pro-oxidant transcription factor that is post-transcriptionally upregulated in β cells during metabolic stress. Here we seek to uncover the mechanisms underlying this maladaptive response to metabolic stress.
Methods: RNA-protein and protein-protein interactions were measured using RNA immunoprecipitation and co-immunoprecipitation, respectively, in Min6 cells and mouse islets. Phos-tag analyses were used to assess hnRNPK phosphorylation in primary mouse and human islets and Min6 cells. Translating ribosome affinity purification (TRAP) followed by RT-qPCR was used to identify changes in the ribosome occupancy of mRNAs in Min6 cells. Gene depletion studies used lentiviral delivery of CRISPR-Cas9 to Min6 cells. Apoptosis was measured in primary islets using a cell-permeable dye with a fluorescence readout of activated cleaved caspase-3 and-7.
Results: A de novo motif analysis was performed on a subset of genes previously found to be regulated at the level of ribosome binding during PDX1-deficiency, which identified a poly-cytosine (polyC) motif in the 3′UTR of the transcript encoding JUND. The polyC-binding protein hnRNPK bound to the mRNA encoding JUND, leading us to hypothesize that hnRNPK regulates JUND expression during glucolipotoxicity. Indeed, loss of hnRNPK blocked the post-transcriptional upregulation of JUND during metabolic stress. hnRNPK was phosphorylated in mouse and human islets during glucolipotoxicity and in islets of diabetic db/db mice. The MEK/ERK signaling pathway was both necessary and sufficient for the phosphorylation of hnRNPK, upregulation of JUND levels, and induction of pro-oxidant and pro-inflammatory genes. Further, we identified the RNA helicase DDX3X as a new binding partner for hnRNPK that is required for efficient translation of JUND mRNA. Loss of hnRNPK reduced DDX3X binding to translation machinery, suggesting that these factors cooperate to regulate translation in β cells.
Conclusions: Our results identify a novel ERK/hnRNPK/DDX3X pathway that influences β cell survival and is activated under conditions associated with T2D.
Multi-omics insights into functional alterations of the liver in insulin-deficient diabetes mellitus
- Abstract
Objective: The liver regulates the availability of insulin to other tissues and is the first line insulin response organ physiologically exposed to higher insulin concentrations than the periphery. Basal insulin during fasting inhibits hepatic gluconeogenesis and glycogenolysis, whereas postprandial insulin peaks stimulate glycogen synthesis. The molecular consequences of chronic insulin deficiency for the liver have not been studied systematically.
Methods: We analyzed liver samples of a genetically diabetic pig model (MIDY) and of wild-type (WT) littermate controls by RNA sequencing, proteomics, and targeted metabolomics/lipidomics.
Results: Cross-omics analyses revealed increased activities in amino acid metabolism, oxidation of fatty acids, ketogenesis, and gluconeogenesis in the MIDY samples. In particular, the concentrations of the ketogenic enzyme 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2) and of retinol dehydrogenase 16 (RDH16), which catalyzes the first step in retinoic acid biogenesis, were highly increased. Accordingly, elevated levels of retinoic acid, which stimulates the expression of the gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PCK1), were measured in the MIDY samples. In contrast, pathways related to extracellular matrix and inflammation/pathogen defense response were less active than in the WT samples.
Conclusions: The first multi-omics study of a clinically relevant diabetic large animal model revealed molecular signatures and key drivers of functional alterations of the liver in insulin-deficient diabetes mellitus. The multi-omics data set provides a valuable resource for comparative analyses with other experimental or clinical data sets.
- Abstract
Objective: Reelin (RELN) is a large glycoprotein involved in synapse maturation and neuronal organization throughout development. Deficits in RELN signaling contribute to multiple psychological disorders, such as autism spectrum disorder, schizophrenia, and bipolar disorder. Nutritional stress alters RELN expression in brain regions associated with these disorders; however, the involvement of RELN in the neural circuits involved in energy metabolism is unknown. The RELN receptors apolipoprotein E receptor 2 (ApoER2) and very low-density lipoprotein receptor (VLDLR) are involved in lipid metabolism and expressed in the hypothalamus. Here we explored the involvement of RELN in hypothalamic signaling and the impact of diet-induced obesity (DIO) on this system.
Methods: Adult male mice were fed a chow diet or maintained on a high-fat diet (HFD) for 12–16 weeks. HFD-fed DIO mice exhibited decreased ApoER2 and VLDLR expression and increased RELN protein in the hypothalamus. Electrophysiology was used to determine the mechanism by which the central fragment of RELN (CF-RELN) acts on arcuate nucleus (ARH) satiety-promoting proopiomelanocortin (POMC) neurons and the impact of DIO on this circuitry.
Results: CF-RELN exhibited heterogeneous presynaptic actions on inhibitory inputs onto ARH-POMC-EGFP neurons and consistent postsynaptic actions. Additionally, central administration of CF-RELN caused a significant increase in ARH c-Fos expression and an acute decrease in food intake and body weight.
Conclusions: We conclude that RELN signaling is modulated by diet, that RELN is involved in synaptic signaling onto ARH-POMC neurons, and that altering central CF-RELN levels can impact food intake and body weight.
- Abstract
Objective: Glucocorticoids (GCs) are widely prescribed medications that are well recognized to cause adverse metabolic effects including hyperphagia, obesity, and hyperglycemia. These effects have been recapitulated in a murine model of GC excess, and we hypothesize that they are mediated, in part, through central mechanisms. This study aimed to identify genes in the hypothalamic arcuate nucleus (ARC) that are altered with GC treatment and evaluate their contribution to GC-induced metabolic abnormalities.
Methods: Corticosterone (Cort; 75 μg/ml) was administered in the drinking water to male C57Bl/6J mice for 2 days or 4 weeks. Phenotypic analysis of each group was undertaken and central and peripheral tissues were collected for biochemical and mRNA analyses. Arcuate nuclei were isolated by laser capture microdissection and tissue analyzed by RNA-seq.
Results: RNA-seq analysis of ARC tissue from 4 week Cort treated mice revealed 21 upregulated and 22 downregulated genes at a time when mice had increased food intake, expansion of adipose tissue mass, and insulin resistance. In comparison, after 2 days Cort treatment, when the main phenotypic change was increased food intake, RNA-seq identified 30 upregulated and 16 downregulated genes. Within the genes altered at 2 days were a range of novel genes but also those known to be regulated by GCs, including Fkbp5, Mt2, Fam107a, as well as some involved in the control of energy balance, such as Agrp, Sepp1, Dio2, and Nmb. Of the candidate genes identified by RNA-seq, type-II iodothyronine deiodinase (Dio2) was chosen for further investigation as it was increased (2-fold) with Cort, and has been implicated in the control of energy balance via the modulation of hypothalamic thyroid hormone availability. Targeted knockdown of Dio2 in the MBH using AAV-mediated CRISPR-Cas9 produced a mild attenuation in GC-induced brown adipose tissue weight gain, as well as a 56% reduction in the GC-induced increase in Agrp. However, this conferred no protection from GC-induced hyperphagia, obesity, or hyperglycemia.
Conclusions: This study identified a comprehensive set of genes altered by GCs in the ARC and enabled the selection of key candidate genes. Targeted knockdown of hypothalamic Dio2 revealed that it did not mediate the chronic GC effects on hyperphagia and hyperglycemia.